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Abstract

This paper discusses the application of Monte-Carlo Lagrangian particle models for the simulation of turbulent dispersion
phenomena in the atmosphere. This type of modeling approach requires a numerical scheme for the stochastic generation of wind
fluctuations. A new, fully three-dimensional, Monte-Carlo scheme is proposed here which is able to generate wind fluctuations with a
specified degree of auto- and cross-correlation. All three spatial cross-correlations are included in the numerical scheme.

This numerical method has been programmed using the APL language (MC-LAGPAR II model) and successfully tested. The
listing of the key APL computational routine is presented and provides an example of the flexibility and computational power of the

APL compact notation.
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1. INTRODUCTION AND OVERVIEW

Particle modeling is the most recent and powerful compu-
tational tool for the numerical simulation of the dynamics of a
physical system. It has been particularly successful in a wide

spectrum of applicationsl, which range from the atomic scale
(e.g., electron flow in semiconductors, and molecular dynamics)
to the astronomical scale (e.g., galaxy dynamics), with other
important applications to plasma and turbulent fluid dynamics.

Particle models can be purely deterministic or possess
stochastic components. In the first case, particle motion is
generated from particle interactions and/or potential fields.
The simulation of particle trajectories is, in this case, uniquely
determined. But particle methods can also possess stochastic
characteristics that can be numerically simulated by Monte-
Carlo techniques, generating semi-random "perturbations" of
particle velocities. In this second case, each simulation of
particle dynamics is just a realization from an infinite set of
possible solutions.

Particle models have been applied to air pollution disper-

sion simulationsz’B’l“’j’6 but they have not been used as exten-
sively as other dispersion techniques, such as Gaussian models
and K-theory grid methods. In particular, Monte-Carlo tech-
niques have provided a straightforward and computationally
fast method for simulating, with semi-random particle veloc-
ities, the actual stochastic fluctuations (i.e., the effects of
turbulent eddies) in the atmosphere. The basic algorithm of
his Monte-Carlo Lagrangian particle approach is given by the
two equations

i

Xt + At) = xp(t) N V[xp(t), t] At (1)

Y[xp(t),t] = \_![xp(t)] + V'[xp(t), t, p, At] (2)

which represent the motion xp(t)=[x(t), y(t), z('t)]P of a

computer particle p tracing the atmosphgric motion described
by a space- and time-dependent velocity fieldV = [ux, Uy uz] .
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Eq. (1) is rigorously correct only for At—0, while Eq.(2) uses
the common approximation of splitting the velocity field V into
an "average" term V (which is assumed to vary only with space)
and a fluctuating component V' that needs to be computed at
each time step At.

The objective of each simulation is to provide dispersion
computations in which the motion and spread of the computer
particles approximate, on an ensemble basis, atmospheric

dispersion properties. The term V is assumed known from
average wind measurements or meteorological analyses, while
the term V' needs to be generated by an appropriate Monte-
Carlo scheme. Eq.(2) points out that the fluctuation V' is
generally assumed to be particle-dependent (i.e., it depends
upon the previous fluctuations V' of the same particle p) and
affected by the length of the time interval At.

In the air quality applications of Monte-Carlo dispersion
methods, several problems have been encountered; mainly

1. Monte-Carlo models (as all Lagrangian models) require a
Lagrangian meteorological input which is not available.
However, this input can somehow be derived from
Eulerian measurements under certain simplifying assump-

tions7’8’9.

2. Eulerian meteorological measurements show that, espe-
cially in the surface layer, the along-wind velocity fluc-
tuations u' are negatively correlated with the vertical
wind components w' (i.e., u'w'<0). Numerical schemes
which take this effect into account have been pro-

posed! 011512,

3. Eulerian meteorological measurements show that the
vertical wind velocity fluctuations w' have a skewed
distribution in which a negative w'is more frequent than a
positive w', but possesses a lower average intensity [w'l.
Methods have been proposed for incorporating a skewed

representation of w' 12,1 3’“’.
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4. Eulerian meteorological measurements show considerable
variation with altitude of the vertical turbulent fluctua-
tion intensity, which is characterized by the standard
deviation o, of the vertical wind fluctuations w'. The

incorporation of a 0w dependent upon z in Monte-Carlo

models has created numerical simulation problems, with
seemingly inaccurate mass accumulation effects in layers
with lower 0w In order to avoid this phenomenon, semi-

empirical correction factors have been proposed13’15’l6.
Moreover, some contradictions among these semi-
empirical approaches have been investigated and

clarified!’.

Most of the currently available Monte-Carlo models are
limited by the common assumption that the components of the
velocity fluctuations V' are statistically independent from each
other. Schemes have been proposed which include the negative
correlation between the along-wind u' and the vertical-wind w'

velocity ﬂuctuationslo’1 1’12. These schemes assume the x-axis
along the main wind direction, so that

V=0(@,o,0 (3
Vo= (', v, w) (%)
uv o= VW = 0 (5)
uw' < 0. (6

The main wind direction, however, varies with the position xp(t)

(especially the altitude z), thus requiring the x-axis to vary
along the particle trajectory, as performed in a proposed

particle-dependent Special Reference (SR) systemls.

Another complication derives from the fact that most
Eulerian measurements of the statistical properties of the
fluctuation V' are performed with respect to a fixed reference
system (e.g., an east-north system) in which the x-axis is not
aligned with the average wind direction. Algorithms have been
developed for estimating the along-wind and cross-wind fluc-
tuation intensities o and o, asa function of the average

wind components, Gx and u_, and the fluctuation intensities

measured in a fixed orthogonal system (x, y)18:

s Ty
X y
32452 .32 42
2 x U y uy
Ou, = —3 > (7)
u” -u
X y
§lol a2 ol
2 y X
UV' - 62 _ GZ ®
X y

These equations are not valid, however, when I UXIZIU |; i.e.,

when the wind direction is close to a multiple of 45~ in the
(x, y) system,

It is clear that, when a full set of measurements (or

. . . . 2 2 2
inferences) of wind fluctuation variances O T and O

X y z

autocorrelations u;((tiﬁ?(t + A1), u'y(t) u'y(t + AY),
T'Z(ti u'z(t + At), and cross correlations u;((ti u'y(t),

u;((t? u’Z(t), u'y(t) u'z(t), is available with respect to any fixed

orthogonal reference system, a need exists for incorporating
this information into an appropriate Monte-Carlo scheme which
makes use of this input. This paper does not address the
difficulties and uncertainties still present in the measurement
(or inference) of the statistical properties of V'. Instead, our
objective here is to present a new Monte-Carlo scheme which is
able to account for this additional meteorological input, when
available.

It the rest of this paper, the new Monte-Carlo scheme is
described in Section 2, while Section 3 discusses the APL-coded
computer implementation of this method (MC-LAGPAR II
model).

2. THE NEW MONTE-CARLO SCHEME

Let us consider the V' = [u;(, u'y, u'z] wind velocity
fluctuations in a fixed orthogonal reference system. In this
system, u', u' and u, can be generated by the Monte-Carlo
scheme y

u;((tz) = 1, u;((tl) + u"x(tz) (9a)
u'y(tz) = 1, u'y(tl) +igul(t) + u"y(tz) (9b)
u(t) = £, upt)) + fs u'y(tz) w1, ) (t)) + ut (t) (9¢)

where u‘)'( u';l, u'é are uncorrelated zero-averaged Gaussian
"noises" (i.e., random numbers) with standard deviation ou,, ,
g, and O .. The system (9) provides a recursive
u u

y z
computation of u;(, u'y, and u'z if the parameters fl’ £2, f3, fu,

fj, and f6 are known, together with the standard deviations

Oyns Oyns and O (Initial values of u;(, u'y, and u'z also need

X y z
to be provided; however, they can be generally assumed equal
to zero.) The objective of the following analytical

manipulations is to estimate the nine input parameters (six f's
and three au,,‘s) from statistical variables _possessing

meteorological significance (i.e., wind fluctuation variances,
autocorrelations and cross-correlations).

Let us multiply the three Egs. (9) by u;((tl), u'y(tl), u'z(tl),
respectively. Then, if the processes (9) are stationary with
=t + At, and remembering that, by definition, u‘;(, u"y, u"

z
are totally uncorrelated, we obtain, after averaging,

2
=
u;((tziu;((tly £ ou;( (10a)
L} L} = 2 A} 1
uy(tzs uy(tl) f, cu,y + 1y ux(tz) uy(tl) (10b)
W)U = £, 02, + £ WHAIEED +
z2 7zl T, u'Z 5 Ty 2zl

fooult, u'Z(t1 . (10c)

But, using Egs. (9) the three unknown terms in the right
side of Eqgs. (10b) and (10c) can be expressed as

TET R -
ux(t2 uy(tl) fl Txy cu;( Uu,y (11a)
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u'y(tz)u'z(tl) :f2r O Oy +f3f r_ o, 0o, (llb)
. y z X

u () u'z(t_ﬁ =f r_o (11c)

where rxy’ Fozr Ty 37 the cross correlations between u;( and

yz
u'y, u'y and ul, uy and ul, respectively. By substituting Eqgs. (11)

into Egs. (10), we obtain

2

. cu;( = fl O’u;( (12a)
2 2
r of =f,0% +f,f.r._ o, 0 (12b)
y uy 2 uy 371 xy uy u'y
2 2
r o =1, 0% +f.(f,r o, 0, +
z Ty 4 u 572 yz uy u

f.f

38 Ty cu;( ou,z) + f6f r_og., a0 (12¢)

1 'xz "u' "
X z

where reo ry and r, are the auto-correlations of the fluctuations

u;(, u'y and u'z, respectively, with time lag At.

Additional equations are required to solve the entire
system. By multiplying Eq. (9a) by Eq. (9b) and averaging, we
obtain

rxy ou;( ou,y = fl fz rxy Gu;( cu,y +
2 2
f f,r. 0, +f,0°, (13a)
173 x u;( 3 u

while by multiplying Eq. (9b) by Eq.(9c) and averaging we
obtain

g, 0, +
u u
X

y

r_ o, 0o =f fr +flf5(f

r
1 Al
Xz Cul U 174 xz 2 xy

frcg,)+ff

2 2
3% Vgt O * (f5 f3+f6)cu,, (13b)
X X X

and by multiplying Eq. (9b) by Eq. (9c) and averaging we obtain

2
r_o,0,  =1ffr o o +f f,r 0 +
yz u; uy 274 yz u'y u'Z 275y uy

f,f

2 6f1 rxy O Ty * f3 f4 fl T'xz O Ty ¥
X oy X oz

2 2
f3 fs rxy Oy Oy * f3 f6 ot f5 o - (13c)
X y X y

Moreover, by taking the variances of Egs.(9) and using
Egs. (11), we obtain

2 2 2
cun = Gul (1 'fl) (14a)
X X
2 2 2 2 2
Tm = O (l-iz)-fBGU, -21, f3 flrxycu,ou,(wb)
y Y X Xy

2 2 2 2 2 2 2
o c 9 (1 -f[‘\)-f5 O ~fgon-
z z y X

2f4 fS(fZ ryZ O, O +f3 flrxzcu' O
y z X

2f, 1

4 -2f

f f o (l4c)

61 xz ou;( c’u'z 5 6rxy Uu;( u'

y
The above equations allow a solution of the Monte-Carlo
scheme of Egs. (9) following the computational sequence below:
- from Eq. (12a) we obtain
fo=r (15)

- from Eq. (14a) g can be computed
X

- Egs. (12b) and (13a) give a system of two equations
in the two unknowns 12 and f3, providing the

solution
- 2
r - l'x I'x
£, L X XY (16)
2 1 2.2
-r.r
X Xy
Ty O (a-r, ry)
£y = ——L———z——- (17)
O, (1 - ' rxy)

- from Eq. (14b) g ,n can be computed

y
- Egs. (12c), (13b) and (13c) give a system of three
equations in the three unknowns 13, fl;’ and f5 which

allow a numerical computation of fq, f.and f, (an

5 6
analytical solution for f#’ f5, and fé could be

derived but is too cumbersome).

- from Eq. (14c) o n canbe computed
z

The above scheme has been successfully tested and is able

to provide a multiple time series of fluctuations u;, u'y and u},

with any physically acceptable degree of auto- and cross-
correlation using the meteorological input Oy Ty O r

X Y
which can be either measured or inferred

ul ’ X!
z

ry, Ty rxy’ xz' Tyz
from meteorological analyses and assumptions. This meteoro-
logical input can be easily assumed to vary with space and time.
Space variations are accounted by using meteorological values
interpolated at the particle location Xp(tl); time variations can

be included by performing particle simulations as a sequence of
different steady-state conditions (e.g., 15-minute periods).

The meteorological input for Egs.(9) is estimated at
xp(tl), but is assumed to represent the meteorological param-

eters along the trajectory from xp(tl) to xp(tz). Therefore, At

must be chosen sufficiently small to avoid a large variation of
the meteorological parameters along such trajectory (i.e., the
particle displacement must be smaller than the meteorological
length scales). Vertical displacements are particularly critical,
due to the sometimes large vertical variation of o near the
z

ground.  This factor probably plays a major role in the
inaccurate mass accumulation effects often found in layers
with lower O

z
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An accurate, cost-effective simulation can still be per-
formed using a relatively large At if particle trajectories are
allowed to be "split," when necessary, for properly taking into
account the varying meteorological input (mainly o ,) encoun-
tered from x (t)) to X (t,). Yz

Finally, particles should be reflected by the ground
surface, but reflection should be followed by setting the
particle "memory" u;(, u'y, u'z to zero.

3. THE MC-LAGPAR II MODEL

The algorithms and considerations presented in’ the
previous section have been ‘incorporated into a computer
program, MC-LAGPAR II, which allows Monte-Carlo Lagran-
gian particle simulations of a single source in flat terrain. This
prototype model has been written using the APL interactive
language. The key APL routine for the recursive computation
of u;(, u'y, and u'Z is illustrated in Figure 1, in which the APL

function MC3D extracts the meteorological input from the

input vector IN: autocorrelations (RX, RY, RZ; previously L

Ty rz), standard deviations (SX, SY, SZ; previously Oy Oy

X y

9, ) and cross correlations RXY, RXZ, RYZ; previously, rxy’
z

Cyz? ryz)' Results are saved in the output vector OUT: the six

parameters Fl, F2, F3, F4, F5, F6 (previously fl, fz, f3, fl;’ fj,

i6) and the variances of the Gaussian noises S2X, S2Y, S2Z

(previously 03,, , 03,, , 03,, ). The solution of the linear system

X y z
for F3, F4, F5 is performed in the statement [23] using the
primitive APL operator [3].

The above parameter evaluation allows the recursive
computation of the fluctuations UX, UY, UZ (previously u;(, u'y,

u'z) for each particle I, as illustrated in Figure 2, in which UXO,

UYO, UZO are the "old" fluctuations UX, UY, UZ computed at
the previous time step At. The APL function GN gives a
Gaussian random number with variance S2X, S2Y, or S2Z,
respectively.

(- JUX [T (F1xUXO[1])+GN S2X
(- JUY 11« (F2xUYOLT D +(F3xUX 1 1) +GN S2Y
[ JUZLT+(F3xUZOL DD +(FSXUY [1 D) +(FEXUX[1])+GN $2Z

v0UT+MC3D IN

(1 A

[2] @A COMPUTATION OF THE CARAMETERS €'s

[3] A AND THE GAUSSIAN NOISE VARIANCES

(4] A

[5] RX<«IN[11.0PRY<IN[2],0PRZ+IN(3]

[8]  SX«IN[4].8PSY«IN[5].BPSZ+IN(E]

(71 RXY«IN[7].0PRX7+IN[8].BPRYZIN[9]

(8] Fl«RX

(9] S2X+(SX*2)x1-E1+2

[10] F2«(RY-RXXRXY*2)+DEN«1-(RX*2)xRXY*2

(1] F3«(RXYxSYx1-RXxRY)+DENXSX

[12]  S2Y«(-((F22)xSY*2))+(-((F3*2)xS5X*2))

[13)  S2Y+(SY*x2)+S2Y-2xF2xF3xF1xRXYx SXxSY

(14] A«3 3P0

(15]  A[1;]«SZ, ((F2xRY7ZxSY)+F3xF1xRXZxSX), F1xRXZxSX

[1¢]  A[2; 1J«F1xRXZxSZ

0177 A[2;2]+(F1xF2xRXYxSY)+(FIxF3xRXxSX)+F3xSXx1-F1+2
081 A[2;31«(FLxRXxSX)+SXx1-F1+2

[19)  A[3;11+(F2xRYZxSYXSZ)+F3xFIXRXZxSXxSZ

201 A(3;2]+(F2xRYxSY»2)+(F3xRXYx SXxSY) +S2Y

D211 AL3;3]«(F2xF1xXRXYxXSXxSY)+F3xSX+2

21 B3+(RZxSZ), (RXZxSZ),RYZxSYxS7

D3] Fl«BzA

R4) Fu«FI1(1],0PFS+F1(2],0PF6+FI[3]

5] S27+(SZ*2)+(-(F4»2)xS7+2)+(-(F5+2)xSY*2)+(-(F6+2)xSX*2)
2°]  S27+S2Z+(-2xFUxFSx( (F2xRYZxSYxSZ)+F3xF1xRXZxSXxSZ))
D71 S27Z+S2Z+(-2xFUuxFBXF1xXRX7xSXxSZ)+(-2xF5xFBXRXYx SXxSY)
28] QUT«F1,F2.F3.F4,F5,F6.52X,S2Y, 527

Figure 1. Main APL routine for computing the parameters
of Egs. (9).

Figure 2. APL routine for the recursive updating of the
particle velocity fluctuations.

4. CONCLUSIONS

The new Monte-Carlo scheme presented in this paper
allows a numerical simulation of air quality dynamics which is
more realistic than other simpler Monte-Carlo methods, since it
is able to incorporate fully three-dimensional auto- and cross-
correlated wind fluctuations. However, it requires advanced
statistical information on wind- fluctuation characteristics,
which is generally not available.

With the continuous improvement of meteorological
measurement techniques and the on-going research on the
relationship between Eulerian measurements and Lagrangian
properties, methods such as the MC-LAGPAR Il approach
proposed in this article, could become, in the near future,
valuable numerical tools for advanced simulations of atmo-
spheric turbulence dispersion phenomena that would make full
use of the extensive on-going monitoring efforts in this field.
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