A{MSP""""' Environmem Vol. 13, pp. 1249-1255.
© Pergamon Press Ltd. 1979. Printed in Great Britain.

0004-6981/79.0901-1249 $02.00/0

J-f

\

REAL TIME PREDICTION OF SO, CONCENTRATION
IN THE VENETIAN LAGOON AREA

—

T

G. FinNzi, P. ZANNETTL* G. FRONZA and S. RINALDI

Istituto di Elettrotecnica ed Elettronica, Centro Teoria dei Sistemi C.NR,
Politecnico di Milano, Milan, Italy

(First received 12 April 1978 and in final form 12 March 1979)

Abstract - The paper describes a certain number of stochastic predictors of daily and hourly SO,
concentration in the Venetian Lagoon area. More precisely, the SO 2 concentration in each inhabited subarea
of the region is represented by the Dosage Area Product (DAP), namely the integral of the daily dosage over
each subarea. From each stochastic model a real time predictor is derived, namely a recursive relationship
allowing to forecast, at the beginning of each hour or day, the DAP levels in future periods. Moreover, a
comparison is made between the performance of predictors using only recorded SO, data and predictors
using also meteorological data such as wind directions and speeds, in order to evaluate the inclusion of such

meteorological information. Possible effects of unknown fluctuations of the emission on the quality of hourly

DAP forecast are also discussed.

1. INTRODUCTION

In the last few years, stochastic models such as ARIMA
(Auto Regressive Integrated Moving Average) or
seasonal ARIMA have been used to fit time series of
pollutant concentrations (see for example Merz e al.,
1972; Chock er al., 1975; McCollister and Wilson,
1975; Tiao et al, 1975). In accordance with the
techniques described by Box and Jenkins (1970), such
models can be employed for supplying real time
forecasts of pollutant concentrations, predicting, at
intervals, future concentration levels on the basis of
data recorded in previous periods.

A different and more complex type of real time
predictor has also been introduced in the literature
(Desalu er al., 1974; Sawaragi and Ikeda, 1974 ;
Bankoff and Hanzevack, 1975). More precisely, sto-
chastic  models derived from  discretised
advection-diffusion equations have been considered
and the forecasts of the concentrations in all the nodes
of the discretisation grid have been provided by means
of Kalman filter techniques (see for instance Jazwinski,
1970). Predictors of this type exhibit a higher degree of
reliability than the ARIMA ones. in particular in the
forecast of episodes, though they require a much
heavier computational effort.

Actually, the comparison in terms of forecast
efficiency between the two approaches is not fully
significant, because the amount of information used
for the prediction is not the same in the two cases. In
fact:

(i) no meteorological and/or emission data appear

in the ARIMA models and therefore no infor-
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mation about meteorology and/or emission is
exploited when forecasting ;

(ii) in the ARIMA approach, the concentrations in
the different stations are considered one by one,
namely as separate stochastic processes, so that
all the information supplied by the cross cor-
relations is not taken into account.

The present paper illustrates stochastic models and
predictors of daily and hourly SO, concentration in
the Venetian Lagoon area, which has been previously
investigated from different viewpoints (see for ex-
ample, Runca et al, 1976; Finzi et al, 1977). In
particular, a class of models described here represents a
trade off between the ARIMA and Kalman ap-
proaches outlined above. More precisely, the simple
structure of the ARIMA representation is maintained,
but the characteristics (i) and (ii), lowering the forecast
efficiency, are, at least partially, removed. In fact,
meteorological inputs are introduced into the ARIMA
models, thus turning them into the so called ARIMAX
(ARIMA with eXogenous inputs, see for instance
Young and Whitehead. 1977). As for (ii) instead of
analysing the concentrations station by station, an
overall index of pollution (Dosage Area Product or
DAP) is defined for each inhabited subarea of the
region under consideration (see Duckworth and Kup-
chanko, 1967).

2. THE VENETIAN LAGOON AREA AND
THE AVAILABLE DATA

The region under consideration, the Venetian La-
goon, is shown in Fig. 1, where the three inhabited sub-
areas of Marghera, Mestre and Venice are pointed out.
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Fig. 1. The Venetian Lagoon region, the three subareas and the monitoring network.

Data used for the present analysis have been
provided by the Governmental Health Department
network installed in the Venetian area by Tecneco.
Details on this network, such as the criteria followed
for the determination of the measurement sites, the
kind of instruments, the expected error of individual
hourly measurements, the correlation between mea-
sures at neighboring sites, can be found in Tecneco
(1973). At present the network (Fig. 1) consists of 24
stations for measuring ground level SO, concentration
and one meteorological station located in the histori-
cal center 15 m above the ground.

The meteorological station and ten SO, stations
have been operating continuously since February
1973, and the others since 1974. A small computer
scans the sensors at each station every minute and
computes hourly average values, as well as the highest
daily 30 min average. Moreover, any time that the
30 min legal standard of 0.30 ppm is exceeded, 2
warning signal is transmitted to the local authority.
The data recorded, on an hourly basis, at the me-
teorological station are wind speed and direction,
pressure, relative humidity. temperature, rainfall, fog
and cloudiness.

All the emissions of SO, are lumped in the industrial
zone of Porto Marghera, at lcast in the “summer”
considered in the present analysis (the period 1
May-30 September 1974). There is no reliable infor-
mation on the emission rates of the sources; however,
the nature of the industries suggests that the total daily
emission can reasonably be considered as constant.
The assumption is less reasonable at the hourly level:
in fact, the performances of the hourly forecasts
suggest that the lack of information about hourly

fluctuations of the emissions is the main limitation of
the use of the ARIMAX predictors described in this
paper. '

3. DEFINITION AND EVALUATION OF
THE DOSAGE AREA PRODUCT

The analysis has been carried out with respect to an
index which can be considered as representative of the
overall pollution in each inhabited subarea.

The Dosage Area Product over a region Z in the
k-th period of time is defined as

l tk+ 1T
DAP(k) = — [ J
Al

- kT

c(x, y,t)dtdxdy,

where T = time interval, c(x, y,t) = concentration at
time t at point (x, y), A = area of 4. '

If D(x, y, k) denotes the dosage at point (x, y) in the
k-th period of time, Equation (1) can also be written in
the form

1
DAP(k) = 3 J‘ D(x, y,k)dxdy. )
A

For each k, an estimation of the integral in Equation
(2) must be carried out on the basis of the dosages
{D;(k)}i- , recorded in the N monitoring stations. Such
estimation can be made by means of the polygons
method (see, for instance, Gray, 1974), which simply
consists of the following procedure.

(i) Divide # in N subregions .2;. The subregion #;

is defined as the locus of points in # for which
the i-th station is the nearest station. (Hence the

-
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Real time prediction of SO, concentration

boundary of #; in the interior of # turns out to
have a polygonal form.)

(ii) Compute the integral in Equation (2) by the
approximation D(x,y,k) = Dik) for all
(x, y) € #:. Thus, if A, denotes the area of Z;, the
DAP turns out to be a convex combination of
the measurements in the monitoring stations:

N
DAP(k)=% Y. A:Dik). (3)
i=1

Through Equation (3), daily and hourly DAP time
series for the three -inhabited subareas have been
computed in correspondence with summer 1974. Al-
ternative methods for evaluating the DAP from the
available concentration measurements, such as least
squares surface interpolating techniques (see, for in-
stance, Anderson, 1970; Finzi et al,, 1978) have also
been used without obtaining significant differences in
the statistical characteristics of the DAP series.

The DAP series evaluated through the procedure
described above represent, together with the me-
teorological records, the data set for the stochastic
models and predictors described below. Thus, for
brevity, such series, though resulting from an appro-
ximate evaluation and not from direct measurement,
will henceforth be referred to as “the observed DAP
series”.

Global pollution indicators different from the DAP
could also be used to analyze the Venetian Lagoon
area. In particular, the Dosage Population Product
(DPP), introduced by Finzi et al. (1977), is particularly
attractive, since it is much more clearly related with the
health damages caused to the population. Neverthe-
less, in the present case the DAP and the DPP are

proportional one to each other since the population is

almost uniformly distributed in the three sub-areas.
For this reason, reference is made in the following only
to a single global indicator, namely the DAP.

4. STOCHASTIC MODELS AND PREDICTORS
OF DAILY DAP ’

First, the three daily DAP time series, observed in
summer 1974 in the three inhabited sub-areas, have
been considered as (partial) realizations of stationary
stochastic processes and, in accordance with the
techniques recommended by Box and Jenkins (1970),
different ARMA (=stationary ARIMA) models have
been calibrated in order to fit the time series. The
results of such analysis can be summarized as follows.

ta) The distribution of each process {DAP(k)} has
turned out to be lognormal {see also Larsen
(1969)] at more than 20% level \of significance
through the Kolmogorov-Smirnov test. Thus
the process of logarithms or logprocess {y(®)},
where y(k) = In DAP(k), has been considered as
normal.

{b) In the ARMA class, the best model of each
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logprocess has turned out to be AR(1) (Auto-
Regressive of order 1), namely

(k) — p=¢(yk—=1) — ) + ak),  (4)

where u = logprocess mean: ¢ = model para-
meter; {&(k)} = zero mean purely random
process (white noise).

(c) The overall statistical test on the validity of the
model (diagnostic check), precisely the cumu-
lative periodogram test on the residuals, has
shown that {¢(k)} is actually white noise at more
than 25% level of significance. Hence model (4)
is not only the best in the ARMA class butis also
acceptable from the view point of statistical
inference.

(d) If § denotes forecast values, the one day ahead
DAP predictor, derived from the stochastic
model (4), is simply given by

F(k) = p + ¢(yk—1) — p),
DAP(k) = exp y(k),

(52)
(5b)
where y(k — 1), the logarithm of the DAP which
occurred on the (k—1)-th day, is an available

datum at the instant of the prediction [namely
at the end of the (k — 1)-th day].

The performance of the three DAP predictors (5)
has been evaluated in three ways:

(i) thecorrelation © between predicted and obser-
ved DAP;

(ii) the standard deviation S of the forecast error

(=observed DAP — predicted DAP);

(iii) the mean square error S, of the forecast error
during “highly polluted days” (= days charac-
terized by DAP > mean of the DAP process +
standard deviation of the DAP process).

The results of computer simulation of Equations (5) for
summer 1974 have turned out rather unsatisfactory, in
particular for the Marghera and Mestre subareas.

Even in the best case, corresponding to the Venice
sub-area (the least polluted one) the performance has '
been rather poor, as shown in Table 1 (first row) and in
the predicted vs observed DAP plane of Fig. 2.

The S and S, values can be usefully compared with
the DAP mean (= 12.5 ppb x day) and standard
deviation (=5.4 ppb x day). The preceding result is
clearly due to the structure of model (4) where the
physical causes affecting the phenomenon (me-
teorology and emission) do not appear explicitly but
contribute to the noise term g(k). Since emission

Table 1. Performance of daily DAP predictors for the Venice

sub-area
DAP S S»
predictor (C] [ppbxday]  [ppbx day]
AR(1) 0.39 5 12
ARX(1) 0.61 4 9
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Fig. 2. Daily predicted (DAP) vs observed DAP for the Venice sub-area [AR(1) predictor].

measurements are not available and, anyway. fluc-
tuations from day to day are certainly not relevant,
attention has been paid to qualify the role of the
meteorological factors, in particular wind direction
which is important in the Venetian case (see Zannetti
et al., 1977). In fact each sub-area is strongly asym-
metric with respect to the sources, and the distribution
of hourly wind direction is characterized by significant
variations from day to day. Correspondingly, the three
observed DAP series exhibit an “irregular” behaviour
which cannot be accounted for by a simple autoregres-
sive representation. Thus, Equation (4) has been
replaced by the following ARIMAX model (specifi-
cally ARX(1):

k) = p = aly(k = 1) = K] + ¥ [ (k) — 1]

+ ¥ [uz(k)— pz] + k), (6)
where u, (k) = logarithm of the average wind speed in
the k-th day; u, = mean of {u(k)}; u,(k) = logarithm
of p(k)/24, where p(k) is the number of hours in the k-th
day characterized by wind blowing from the sources

towards the subarea; p, = mean of {uy(k)}; &, ¥y, ¥
= model parameters.

The predictor derived from model (6) is
§tky = pralyk = D= p] + ¥, [y (k) — ]

+ ¥, [ua(k)—p2). (72)
(7b)

namely the forecast at the end of the (k — 1)-th day

requires a previous forecast of u,(k) and u,(k) which

appear as inputs in Equation (7a). In the absence of a

wind predictor, it is however possible to point out an

upper and a lower bound of the performance of the
DAP predictor (7).

DAP({k) = exp j(k).

The upper bound corresponds to a perfect wind
predictor [u,(k) and u,(k) are equal to their actual
values in Equation (7a)] while the lower bound
corresponds to a wind predictor based on the per-
sistence assumption, [namely u,(k) = u,(k—1) and
uy(k) = uy(k—1) in Equation (7a)].

The performance of the ARX(1) predictor (7) has
given an average improvement between 10%; (lower
bound) and 30%, (upper bound) with respect to the
AR(1) predictor (5).

For instance, in the case of Venice, the predictor
performs as shown in Fig. 3. From the comparison
with Fig. 2 a certain reduction resulting from the peak
smoothing effect can be appreciated. More specifically,
the values of the three forecast quality indexes are
shown in the second row of Table 1.

It must be noticed that correlations of order 0.6-0.7
between observed and predicted daily DAP Values
seem to be the upper bound of the performance of the
daily predictors (see also Finzi et al., 1978).

In other terms; this limitation seems inherent to the
time interval, the day, which is rather long compared
with the dynamics of the phenomenon, rather than to
the region under consideration and to the structure of
the ARIMAX models. Recall also that a non stochastic
representation such as the complex and detailed
advection—diffusion daily model described by Shir and
Shieh (1973) has given an average fitting performance
of the order mentioned above. In cases characterized
by extremely “regular” meteorology the performance
has been slightly better (0.70-0.75 as shown by Finziet
al., 1977, for the city of Milan). On the contrary, the
slightly below average result in the case of Venice can
easily be explained by the much more complex features
of the pollution phenomenon (Zannetti et al., 1977).
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Fig. 3. Daily predicted ( DAP) vs observed DAP for the Venice subarea [ARX(1) predictor with actual wind
. as input].

Significant improvements have not been obtained by
introducing stability categories into the ARX model.
Zannetti et al. (1977) have already observed that the
effect of the stability factor on SO, concentrationis
difficult to specify in Venice.

5. STOCHASTIC MODELS AND PREDICTORS

OF HOURLY DAP

For brevity, the forecast performances of the
different DAP predictors, illustrated in this section,

Table 2. Performance of one hour ahead predictors for
Marghera (a) and Venice (b) sub-areas

(@)
DAP S Sy
predictor (] [ppbx hour] [ppb x hour]
AR(1) 073 21 44
ARX(1) ' ‘
lower bound 0.74 21 43
ARX(1)
upper bound 0.74 20 43
Persistence 0.73 22 44
CSAR(1) 0.77 20 42
(b)

DAP S Sa
* predictor (S} [ppb x hour] [ppb xhour]
AR(1) 0.78 7 20 ’
ARX(1)
lower bound 0.79 6 19
ARX(1)
upper bound 0.81 6 18
Persistence 0.78 7 20
CSAR(1) 083 5 17

will be shown only for Marghera (the most polluted
subarea) and Venice (the least polluted subarea) since
each predictor performs almost as well in all subareas.

First, Equation (4) and the derived predictor (5)
have been used in order to model and forecast hourly
DAP. In particular, the AR(1) model (4) is again the
best in the ARMA class. For 1974, the forecast
performance of (5) is shown in Table 2 (first row); the
performance indexes can be usefully compared with
the estimated hourly DAP means and standard de-
viations (m = 32 ppb x hourand ¢ = 30 ppb x hour
for Marghera, and m = 12 ppb x hour and 6 =11
ppb x hour for Venice). .

In addition, the following ARX(1) model [quite
similar to (6)] has been considered

z(k)—v = 0(z(k— =)+ ¥, (uy (k) —=v,)
+¥,(uy(k)—va)+ k), (8)

where z(k) = logarithm of the k-th hour DAP in the

subarea; v = mean of {z(k)}; u,(k) = logarithm of the
average wind speed blowing towards the subarea
during thelast H (H = given number) hours (precisely,
the H hours before the end of hour k); v, = mean of
{u ()} ua(k) = logarithm of the percent of hours
characterized by wind blowing towards the subarea
during the last H hours; v, = mean of {uy(K)}; 0, ¥y,
¥, = model parameters; {e(k)} = noise process.

The model calibration gave the following values for
H’

1 for Marghera
1 for Mestre
2 for Venice.

H =

The predictor derived from Equation (8)is obtained by
setting the noise term to zero in Equation (8) and its
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performance is shown in the second and third rows of
Table 2.

From the analysis of the first three rows of Table 2,
one can conclude that the two predictors AR(1) and
ARX(1) perform equally well, even in the case of
perfect prediction of wind direction and speed. How-
ever, the quality of one hour ahead forecasts is not
very significant, because of the shortness of the forecast
interval. As a matter of fact, also the most trivial
predictor based on the persistence assumption (next
hour DAP = this hour DAP) exhibits a performance
only slightly worse than the preceding ones, as shown
in the fourth row of Table 2.

In conclusion, the forecast of the SO, concentration
one hour in advance is not useful in assessing the
validity of the models. On the contrary, as the forecast
step increases, the performance of stochastic models
becomes inicreasingly superior to the persistence pre-
dictor. For instance, Table 3 (first four rows) exhibits
the performances of all the above mentioned pre-
dictors in the case of forecasts for four hours ahead.

6. DETECTION OF EMISSION CYCLES

In the case of Marghera, the performance shown in
Table 3 is not very satisfactory, even when the best
ARX(1) predictor is used. Thus, an attempt has been
made to ascertain whether or not the relative lack of
forecast quality could be ascribed to the lack of
information about hourly fluctuations of the emis-
sions. Seasonal ARIMA models (see Box and
Jenkins, 1970) have given no useful information from
this view point. On the contrary, indications were
given by another type of “cyclic” model, namely by
CSAR(1) (Cyclo Stationary Auto Regressive of order
1, see, for instance, Thomas and Fiering, 1962):

2(28i + j) — ¥/
=iz +j— 1) — V™) + &(24i +))
(G=12...,24; i=0,1,..) ®

where z(24i + j) = logarithm of the average DAP in
the j-th hour of the i-th day: v/ = hourly mean of

{2(24i + j)}; {¢’}}2, = model parameters; {#(24i +

j)} = noise term.

Equation (9) points out that CSAR models are
simply AR models with periodically varying (every 24
steps, in the present case) parameters. The one hour
ahead and four hours ahead performance of the
predictor derived from Equation (9) is shown in the
fifth rows of Tables 2 and 3 respectively. Although no
exogenous input appears in Equation (9), the forecast
quality is comparable and often higher than the upper
bound of ARX(1).

In general it would not be possible a priori to
distinguish whether the good performance of the
periodic model (9) is due to the presence of an emission
cycle or to the existence of very regular daily cycles of
the meteorological variables. Nevertheless, as already

T o S Ne———

Table 3. Performance of four hours ahead predictors for
Marghera (a) and Venice (b) sub-areas

(a)
DAP s S,
predictor © [ppb x hour] [ppb x hour]
AR(D) 0.29 29 65
ARX(1)
lower bound 0.35 28 63
ARX(1)
upper bound 0.45 27 58
Persistence 0.29 36 68
CSAR(1) 0.50 25 53
(b)
DAP S S
predictor © . [ppbxhour] [ppbxhour]

AR(1) 0.33 10 31
ARX(1) :
lower bound 0.45 9 27
ARX(1) .
upper bound 0.58 8 24
Persistence 0.33 12 33
CSAR(]) 0.60 7 23

pointed out, wind direction and speed do not exhibit,
in the case studied, a regular daily periodicity, so that
the existence of a non-negligible emission cycle seems
the more reasonable explanation of the resuit. '

7. CONCLUDING REMARKS

Simple stochastic models and predictors of the DAP
(Dosage Area Product), an overall pollution index,
estimated on the Venetian Lagoon inhabited subareas,
have been described in this paper.

The main conclusion is that information on wind
speed and direction gives a satisfactory improvement
of one day ahead forecast with respect to purely
stochastic representations such as ARMA models.
More precisely, the usefulness of Auto Regressive
predictors with exogenous inputs (ARX models) is
anyway really appreciable if a good wind forecast is
available (for instance, if a reliable wind model is also
developed).

As for subdaily forecast, such improvement is
reduced probably because the unknown fluctuations
of the emissions are relatively important. In this case.
the forecast quality is improved introducing a CSAR
model (Cyclo Stationary Auto Regressive Model) with
periodically varying parameters.
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