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1. Introduction.

Air pollution numerical modeling has been developed by following
two main approaches: deterministic models and stochastic ones. The
former consist of prediction formulas based on the physices of transport
and diffusion of pollutants. In this way the knowledge of the "cause"
(emission and meteorology) allows the computation of the "effect"
(concentration) according to the physics of the phenomenon. This
approach, after a careful calibration in the study area, can be used
for short-term forecasting purposes where good short-term forecasting
of meteorological and emission parameters is available. Deterministic
predictors based on physical models are especially useful for control
and planning problems, where temporary or permanent modifications of

the emission pattern are contemplated. The most common predictors of



this type are the Gaussian plume formula, the Gifford-Hanna model and
the K-model, i.e., the model based on the numerical integration of the
mass-dispersion differential equation of fluid dynamics. According to
our experience, e.g., see Runca et al. (1976), deterministic models and,
in particular, the Gaussian model are especially suited to the fitting
of long-term average concentration of values (monthly or seasonal
averages). In fact, the real-time short-term forecasting for alert
control using deterministic predictors shows important limitations

as can be seen in Zannetti (1978).

Stochastic models are based on statistical or semi-empirical assump-
tions. They have been applied for the identification of the frequency
distribution of concentration measures, e.g., Larsen (1969), for the
analysis of trends and periodicities in meteorological and air quality
time series, e.g., Trivikrama et al. (1976), and for validation and
testing of semi-empirical relations among the data, e.g., Tiao et al.
(1976). In particular, stochastic or mixed predictors can be success-
fully applied for episode control, i.e., real-time short-term forecasting
of high pollution levels. These models make use of present and past
available data (emission, meteorology and concentration) for the fore-
casting of future concentration values and, in particular, they make use
of the actual concentration data measured at times close to the fore-
casting time. Such information is often more relevant than that obtained
by the always insufficient physical understanding of the phenomenon.

An analysis of the problem of validation and testing of a general

air pollution numerical model is developed in Section 2, where the differ-



ent diagnostic checks applied in the literature are discussed in order
to identify a good validation procedure in this field. Finally, in
Section 3, previous remarks are illustrated by developing a simple
numerical model for the short-term real-time forecasting of CO hourly

values in the St. Louis, Missouri area.

2., Validation of a Predictor.

All fitted models produce a time series of computed concentration
§s for each monitoring station s during the period of the study.
These time series should be compared with the actual measured data S
in order to test the fitting or forecasting performance of the model
acting as a predictor. Often this test is limited to the computation
of the correlation coefficient ry between the two series S and §s .
The information supplied by this correlation is certainly insufficient
and represents only a measure of linear relationship between the two
time series, In fact, it can be easily shown that one can have very
large prediction errors and still have a very high correlation and con-
versely. A high L is associated with a good predictor if and only if
the mean of the error €= Ss-gs is close to zero and its standard
deviation is low. Otherwise a high correlation coefficient means only
that there exists a linear transformation §é = m§s+q of the computed
data (m and q are parameters to be estimated) which is very close to
the actual data cg -

The analysis of the time series of the errors Es should not be

limited to the computation of its mean and standard deviation. A careful

investigation between input parameters (meteorology and emission), space-



time parameters (station position, hour of the day, season), and
modeling error is recommended, as partially shown in Shieh and Shir
(1976), in order both to identify the conditions under which the model
does better or worse and to Propose model modification. Moreover, a
very important evaluation tool is the computation of the autocorrela-
tion function re of. € - First, this function may reveal time
periodicities of~ihe error, for example a diurnal or semi-diurnal
cycle. Second, the autocorrelation function of the error may be used
for the computation of a low-powered but simple test of the model, the

Portmanteau lack of fit, due to Box and Pierce (1970). Finally, the

T function can be used, according to Box and Jenkins (1970), as
a;Sidentification tool for more refined modeling of the error in order
to improve the performance of the predictor.

If the predictor used to calculate §s contains some adaptive
features, i.e., the computation of some model parameters is done on a
learning period of fixed length immediately preceeding the forecasting
time, then, according to Zannetti et al. (1978), the performance of the
model should be plotted versus the length of the learning period in
order to identify its most suitable length.

The validation of an air pollution predictor might also be performed
using only time periods of high measured concentration in order to iden-
tify the performance of the model and its relation to input parameters
with respect to the air pollution "episodes". The study of these cases
can be performed either by defining an episode as a concentration exceed-
ing some specified standard, see Zannetti et al. (1977), or by considering

an episode for a station as a concentration exceeding the station mean

Plus its standard deviation, according to Finzi et al. (1978).



3. Testing a Model for Short-Range CO Prediction in the St. Louis

Air Basin.

For our analysis we have used meteorological and CO hourly data
collected at Station 4 of the St. Louis, Missouri RAMS air pollution
network (data supplied by EPA). The station is located in East St.
Louis and the period of the analysis was June 1 through August 31, 1976,
which provided us with data for a total of 2208 hourly time periods.

The predictor has been defined in the following way. At each hour
t the meteorological and emission conditions of that hour are associated
with one of N specified classes. The associated class at time t is
denoted o(t) . In our case, by analyzing wind speed and direction,
temperature, day of the week (working day, Saturday and Sunday) and hour
of the day, it has been possible to define N=50 different classes with
a sufficient number (greater than 20) of hourly occurrences during the
study period. The day-of-week and hours-of-day classes are chosen as
surrogate emissions classes.

For any given condition class a¥*, let Eg*E{tf, tg, <.} Dbe the
collection of hourly periods during which that condition a¥* obtained.
Define ug* and Og* to be the mean and the standard deviation of the
observed CO hourly concentrations at times Eg* . Similarly define
T, ={t#+k, t3+k, ...} and let 1S, and O, be the mean and standard
deviation of the observed CO hourly concentrations at times gﬁ* .
Finally, define pg* to be the lag k autocorrelation between the CO
concentrations at times Eg* and those at times EE* « With these 5XN

parameters (in our case 250) for each k , we apply the following k-houre

ahead predictor:
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that allows the estimation &(t+k) of c(t+k) on the basis of the

observed condition class and CO concentration at time t

In the case where c(t) and c(t+k) are modeled to have a Joint

normal distribution in each condition class, then this predictor is

equivalent to the conditional mean of c(t+k)

The predictor may also be regarded as an AR(1) model conditioned on the

emission-meteorological class.

The fitting performance of (1) during summer 1976 has been compared

with those of the following models:

8.

b.

persistence model: &(t+k) = c(t);
AR(1) model: c(t+k)-u = pk(c(t)-u) with
to be estimated;

the log-antilog version of (1): &(t+k) =

H and p parameters

A
exp ¢

given the data at time

log(t+k);

t

model (1) applied with N=6 classes depending on day type and

hour of the day only;

model (1) applied with N=8 classes depending on wind direction

sector only.

The results obtained are summarized in the figures.

For the six

models described, we have plotted the prediction lag k against the

root mean square of the prediction error (Figure 1), the correlation

coefficient between observed and predicted values (Figure 2), and the

root mean square of the prediction error for the episodes, i.e., where

measured concentration values are greater than their average plus one



standard deviation (Figure 3). All these show that model (1) with N=50
produces the best performance. We would expectvthat the differences in
performance for the various models would not be so great if the valida-
tion had been done on an independent data set which was not used for the

estimation of model parameters.
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Figure 1. Root mean square of the prediction errors plotted
against the forecasting lag k for six forecasting models:
persistence [®], AR(1) [o], model (1) with N=50 [<], mode% (1)
with N=50 and log-antilog transformation [A], model (1) with
N-6 [V], and model (1) with N=8 [d].
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Figure 2. Correlation coefficient between observed and pre-
dicted values plotted against the forecasting lag k (same

six models of Figure 1).
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Figure 3. Root mean square of the prediction error plotted
against the forecasting lag k (same six models of Figure 1)
for high concentration values.

The analysis of the autocorrelation function of the error shows a
well-marked daily periodicity. However, persistence or AR(1) models
applied to the error time series did not seem to improve the forecasting

performance of the predictor.




The plot of measured and computed concentrations shows different
Performance for each day. In particular all the models have difficulty
handling rapid increases of concentration values (episodes) because their
form is more suited to the description of damping phenomena. However, in
some cases, like the three days plotted in Figure 4, the model (1) is

able to handle very high peaks (1 hour ahead prediction).
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Figure 4. Measured (solid line) and forecasted (dashed l%ne)
one hour ahead CO concentrations during the three-day period
June 25-2T7, 1976. Forecasting performed by applying model (1)
with N=50,

Model performance should be correlated with input parameters (e.g.

meteorology). For example the application of (1) with N=8 (corresponding

to eight wind direction sectors) suggests the analysis of prediction
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errors for each wind direction separately as shown in Figure 5. 1In
this way it is possible to identify those wind conditions associated

with better and worse performance of the predictor.
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Figure 5. For each wind direction sector (1=N-NE, 2=NE-E, 3
3=E-SE, W=SE-S, 5=S-SW, 6=SW-W, T=W-NW » 8=NW-N) the following
values are presented: average measured CO concentration [o],
average one-hour-ahead forecasted CO concentration [o], root
mean square of the one-hour-ahead prediction error [°] , and
the same three values [A, V, and O ] for the high concentration
cases.,
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A special final test has been applied to the six predictors. Con-
centration values have been divided in three categories: low, medium,
and high, by using dividing concentrations equal to the average * one-
half of the standard deviation. In this way, each predictor for each
lag k supplies a 3X3 table of measured versus computed concentration
category in which the diagonal values represent the "correctly" fore-
casted concentrations. In Figure 6, the percentage of "correct" predic-
tions is plotted versus the lag k » While Figure T represents the same
using only cases of medium or high measured concentrations. This type
of test shows that the model (1) with N=50 is not always the best,
although its performance remains close to the best. Of course, it must
be kept in mind that much more extensive use has been made of the Qata

in fitting model (1) than in the case for the other models.
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Figure 6. Percentage of "correct" prediction versus the fore-
casting lag (same six models of Figure 1).
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Figure 7. Percentage of "correct" prediction versus the fore-
casting lag for cases of medium or high measured concentrations
(seme six models of Figure 1).
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