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Abstract

This paper presents an application of the Kalman
filtering method to multi-station air pollution modeling in
order to obtain a useful real-time predictor of
concentration levels, especially during episode situations.
Special attention has been paid to avoiding certain high
dimensionality problems of the Kalman filter while still
retaining some of the deterministic "physical" information
of the transport and diffusion phenomena. Moreover, a
method is proposed to forecast future state values using
only a probabilistic knowledge of future state-transition
matrices, which is the most common situation in air
pollution real-time forecasting with probabilistic
meteorological input. Specifically, the method is applied
to SO02 and meteorological data (Summer 1975) supplied by the
RAMS network (Environmental Protection Agency's Regional Air
Pollution Study) installed in the St. Louis Missouri area.
The results of the proposed methodology are compared with

those supplied by single-station predictors.




ik Introduction

Kalman filters are a class of linear minimum-error-
variance sequential state estimation algbrithms. They have
been used in many applied fields and, in particular, in
navigation space guidance and orbit determination! and in
hydrologyz. The linear discrete version of this methodology
can be used for forecasting problems where the transition
mechanism of a discrete system is described by the discrete

"message model"

x(t+l) = o(t+1l,t)x(t) + T(t)w(t+1) (1)

In this equation, ?(t+l,t) is the state-transition matrix
from t to t+1, f(t) is the state vector at time t,
f(t+l) is a zero-mean white noise stochastic process with
covariance matrix Yw(t+l), and I(t) is the noise transi-
tion matrix. The d;mension of w is not necessarily equal
to that of x.

In the general theory, the state f(t) is not observed

directly. Instead, observations have the form of an "obser-

vation model"

z(t) = H(t)x(t) + v(t) (2)




included in the system noise process f(t)'

A very important problem arises in the application of
the Kalman filter to air pollution problems. In fact, it is
necessary to avoid the high dimensionality of the resulting
Kalman filter equations. For example, when ? is the time-
evolution transition matrix of the K-model, a simple spatial
grid of 20x20x10 points produces Kalman filter matrices of
dimension 4000x4000, Many proposals have been made for the
simplification of this problem. In particular, either the
Green function can be used® to reduce the equation of the
K-model to a difference equation of relatively small dimen-
sion, or a discrete form of Chandrasekar-type equations can
be applied6 for the same goal. Alternatively, the region

3 and, if the subvectors

can be partitioned into subregions
of the subregions are not coupled (or weakly coupled), the
filter algorithm can be applied separately to each of the
subvectors, so reducing the size of the matrices which must
be manipulated. Finally, a multiple linear regression model
can be used“ for ?, so reducing the dimension of the filter

to the number of monitoring stations in the area, losing

however the "physical" information of the diffusion phenomenon.

Our proposed method uses for the dimension of the

filter the number of monitoring stations, but it incorpo-




ithm (Kalman filter) for the estimation of the state of a
linear time-varying dynamic system, driven by white noise of
zero mean and known variance. Under the further assumptions
that v, w and x are mutually uncorrelated, the relevant
formulas are [f(t2|t1) is the estimate at time t; of x(t,)]:
predicted state f(t+1|t) = ?(t+1,t)§(t|t);

predicted error covariance matrix

V§(t+1|t) = @(t+1,t)v§(t[t)®T(t+l,t) + r(t)vw(t+1)rT(t);

~ ~ ~

filter gain matrix

K(t+l) = Vi(t+llt)HT(t+1)[H(t+1)v§(t+l[t)HT(t+1)+Vv(t+1)]—

after processing the observation E(t+1)

x(t+l|t+l) = x(t+l|t) + K(t+1) [z (t+1) =H(t+D)x (t+1|t)];
new error covariance matrix

Vs (E+1]t+1) = [I-K(E+1)H(£+1) ]V (£+1]¢t);

~ -~

where Yi(tzltl) is the covariance matrix of the error
f(tz)—§?t2|t1).

In the Appendix a computer oriented scheme of equations
(1-7) is developed., This method uses equation (3) recur-
sively in order to obtain the forecast up to p time-steps
ahead. This forecast requires, at each time t, the esti-
mates ?(t+k,t+k—l|t), k=1,2,...p of future state-transi-
tion matrices which may be highly time dependent. In air

pollution, for example, the state-transition matrix

1

-
’

(3)

(4)

£5)

(6)

(7)




3. An application of the Kalman filter to Egz forecasting
The methodology of the previous section has been

applied to hourly meteorological and SO. data. The period

2
of analysis is Summer 1975 (2208 hourly time periods) and
the data was supplied by three monitoring stations of the
RAMS network (Environmental Protection Agency's Regional Air
Pollution Study) installed in St, Louis, Missouri (Figure
1). The following time series have been used: three

502 time series, (Station 3, industrial area; Station 5,
commercial area; Station 13, suburban area) wind speed
(station 3), wind direction (Station 3), temperature verti-
cal gradient (Station 5), and hour of the day. All these,

except SO have been categorized as follows:

2"

wind speed, 3 classes (<2m/s, >2m/s and <6m/s, >6m/s);

- wind direction, 8 classes
(N-NE,NE-E,E-SE,SE-S, S-SW, SW-=W,W=NW,NW=N) ;

temperature vertical gradient, 3 classes based on the variable

AT 1%
5 = — 5= (5<-0.005 unstable, s2-0,005 and s<0,005 neutral,
Az 100m

s>0.005 stable); and

- hour of the day, 5 classes (night, transition, low




h+1 24 h L

qaa' = qaa"qa vy
a"=1

s R O | (9)

The transition matrix estimates, given the system state a(t)

at time t, are then (p=8)

~

K7
g(t+k,t+k-1|t) = 'Zl‘;f’a.qc]:a, Jk=1,...,8 (10)
a =

The general program scheme, described in the Appendix,
has been applied to our data in the following way., The
state vector f(t) has four components given by the three
802 hourly concentrations measured for the time t inp Ppm at the
three selected stations, and a forth component which is
identically 1 as required for the easier application of
multiple regression methods. For each of the 57 meteorolog-
ical-time-of-day categories o, we have in Table V a 4x4
state-transition matrix gu which is estimated by multiple
regression methods. A simplified version of the general
methodology (1-7) has been used in which, for computational

y . 2 ;
purposes, the covariance er of I'w, expressed in ppm~ and estimated

e

from the data, has been completely ascribed to w by setting

5 2.436 1077 6.495 1077 2.656 10°¢ LoD
¥,=¥r,= | 6-495 10_ 5.160 10_° -2.626 10_, ), [=| o o ¢ g
¥ "% \2.656 107°-2.626 10"° 2.561 10" 0 01

~
This estimate, er, has been calculated using the error

series f(t+1)-2a(t+1)§(t) during the analyzed period




single~station fitting predictor defined in another paperg.
This latter predictor has been defined in the following
way. For any given combined class o (0=1,2,,..,,57) let

0_
Eaz{tl,tz,...} be the collection of hourly periods during

which that condition o obtained. Define “2 and 03 to be
the mean and the standard deviation of the observed

502 hourly concentrations at time Eg. Similarly define

+k, ...} and let uz, Uk be the mean and

K
T,={t +k, t A

2

standard deviation of the observed 802 hourly concentrations

at times TZ. Finally, define pz to be the lag k

autocorrelation between the 502 concentrations at times

Tg and those at times Tg. With these 5%Xn parameters (in

~

our case 285) for each k, we apply the following k-hours-a-

head predictor:

k 0
oK pa(t) a2
a(t) a(t)

that allows the concentration estimation c(t+k|t) on the basis
of the observed combined class oa(t) and SO, concentration c(t)
time t. In the case where c(t) and c(t+k) are modeled to

have a joint normal distribution in each condition class,

then this predictor is equivalent to the conditional mean of
c(t+k) given the data at time t. The predictor may also be

regarded as an AR(1l) model conditioned on the meteorologi-

cal-time-of-day class.

11

(12)

at




improvement may be expected by better taking into account,
in the definition of matrices &, the physics of the

diffusion phenomena.
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F, Saving
Forcing of the symmetry of VX for numerical stability,
And saving of its main diagonal

G. Filter gain matrix

m -
K=VX‘H1'[H1'VX°H¥+VV] :

H. Process the observation Z=z (T+1)
X = X1+K* [Z-H;+X]
I. A-posteriori error covariance matrix with a formula

numerically more stable! than (7)

T T
VX = [I-KeH;]e*VXe[I-KeH;] + KeVVeK

Je. Saving
Forcing of the symmetry of VX for numerical stability,
and saving of its main diagonal

K. Loop

T=T+1, then end if T>TMA otherwise go to step B,

x'
For a more complete documentation on this subject, the

APL version of the main program of the algorithm is included

in this Appendix,. This main program calls other APL functions

whose role is easily understandable by their names,
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Eu Elements

Comb.

1Cl. o (1,1) (1,2) (1,3)(1,4) (2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)
1 .902 .018 -.005 .001 .650 .515 -.081 .008 .063 -.015 1,167 -.001
2 1.433 -.118 -.049 .003 .560 .713 -,075 .005 -.019 -.092 .762 .004
3 .795 .131 -.018 .001 1.272 .648 .068 -.002 .087 -.182 .677 .005
4 1.211  .301 -.040 -.003 .144 1.155 -.008 -.003 .835 -.314 .673 .025
5 .846 -.038 -.055 .004 -.401 1.037 .014 .004 .145 .136 .927 .011
5 .787 .007 .031 .002 .170 .807 -.072 .004 -.604 .293 .577 .006
- .441 -.000 -.002 .001 -1.159 .946 -.054 .006 -.136 .142 .877 -.001
9 1.111 .027 .034 -.000 .830 .501 .605 -.001 -.349 ,229 .584 .003
9 .601 .001 .001 .001 .111 .833 .015 ,004 2.196 -.082 .733 -.002
10 1.169 -.009 -.014 -.000 -1.928 .978 .052 .011 2.175 -.013 .596 -.005
11 .878 -.039 -.032 .001 -.028 .511 -.022 .004 3.169 .216 .794 -.006
12 .657 -.010 .012 .001 .250 .12 .033 .005 1.341 -,113 .88 -.001
13 .761 -.056 .010 .002 .050 .291 .027 .015 .969 -.039 .910 -.006
14 .769 .001 .004 .001 .241 .603 -.033 .003 -.269 -.010 .798 .002
15 .594 .03 .006 .001 -.399 1.136 -.061 .001 -.111 -.089 .623 .006
16 .166 .000 .164 .001 -.170 .658 .106 .005 .195 .003 2.008 -.005
17 .361 -.006 .05 .001 .124 .804 -.562 .018 -1.043 .038 1.474 -.000
18 .285  .002 .090 .002 1.493 .714 -.047 -.002 -.369 .072 .931 .002
19 .896 -.042 -.045 .002 .015 .e27 -.069 .004 .633 -.306 .683 .008
29 .879 .066 .070 -.002 .511 .748 -.013 ,000 .547 .061 .774 -.002
21 .493 .02 -.002 .002 -.036 .316 -.002 .002 2.433 -.224 .793 -.003
22 .687 .083 .001 .001 .013 .278 -.009 .002 .987 -.029 .908 -.002
23 .339 .057 .019 .002 -.002 .382 .005 .001 -.139 .228 1.138 .002

24 1.187 -.191 .101 -.000 .416 .657 .008 -.001 -,298 -.520 1.078 .007

25 1.012 -.155 -.055 .004 -.009 .691 .013 .002 1.120 -.289 .510 .005
26 .873  .067 -.007 .001 -.025 .986 -.023 .001 -.146 -.019 .680 .013
27 .940 .002 -.059 .002 -.022 .749 -.070 .006 .046 .082 .838 .003
28 .283 .084 -.000 .001 -.057 .936 .044 -.001 .060 .021 .274 .004
29 .698 .106 .010 .002 .065 .682 .003 .001 .167 ~-.796 .831 .005
30 1.002 .260 -.010 -.001 .090 .640 -.004 .001 -.054 -.080 .466 .003
31 1,209 .242 .002 -.001 .019 .760 -.008 .001 -.773 .035 .669 .010
32 .828 -.018 -.006 .0Q03 .161 .483 -.003 .002 .106 -.377 1.104 .001
33 1.322 -.499 .051 .002 .915 -.056 .042 -.001 .925 -.598 .842 .000
34 .949 -.070 .039 .002 .135 .603 -.008 .002 ~-.081 -.025 .757 .01l
35 .701 -.049 -.042 .006 .061 .617 .015 .001 -.151 .382 .865 .004
36 .744 -.135 -,018 .003 -.007 .749 -.037 .002 -.817 -1.033 .364 .020
37 1.002 -.543 .065 .003 .005 .214 ,027 .002 -.178 -.190 .274 .007
33 .585 .022 .142 .001 .158 .355 -.037 .002 .247 -.010 .923 -.001
39 .630 .011 .043 .001 .110 .487 .053 .001 -.655 -.109 .361 .009
10 .632 -.012 -.041 .003 -.242 1.024 -.062 .003 .024 -.094 .417 .004
11 .628 .261 .088 .000 -.043 1.114 ,194 -.001 .023 .096 1.088 -.001
12 .617 .162 .060 .001 -.022 .478 .006 .002 -,139 .174 .366 .004
13 .446  .604 .329 -.002 .144 .232 .008 .001 -.017 .014 .889 .000
14 .307  .062 .252 .003 .036 1.009 .202 -.001 -.046 .148 .307 .00N6
15 .844 203 -.151 .002 -.074 .792 -.088 .003 .039 .576 1.087 -.002
16 1.016 -.381 .133 .,000 .039 .653 .063 .001 .027 .051 .366 .002
17 .336 -.165 .004 .005 -.002 .026 -.005 .003 -.029 -.034 .133 .003
13 .840 .657 .216 -.002 .001 .790 .567 -.000 -.042 -.008 .569 .002
19 1.945 .575 .019 -.005 .038 .643 .007 .000 .184 .403 .116 .000
50 .701 -.139 .039 .003 .011 .869 -.017 .000 .130 .028 .179 .002
£l .744 198 -.012 -.001 -.251 .939 -.004 .002 -.013 .002 1.319 -.001
52 .402 -.002 .006 .002 -.715 1.343 -.008 .003 .093 -.040 .175 .003
53 .420 -.014 -.013 .003 -.405 .758 -.052 .006 -.079 .149 .387 .002
54 1.170 .572 -.143 -.003 ,357 1.032 -,091 -.001 -.507 .393 .256 .003
55 .503 .180 -.037 .003 .15 .550 .090 .002 .056 .122 .,899 .00l
56 .772  .041 -,011 .001 -.111 .670 .l122 .002 .167 .447 .861 -.002
57 .315 -.040 -.007 .003 -.002 .811 -.011. .00l .029 -.826 .264 .009

Table V, ¢, transition matrices for each combined class o,
The fourth row of each matrix is identically 0 0 0 1,
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