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L. INTRODUCTION

Monte Carlo-type models or, more gener-
ally, Lagrangian particle models represent an advanced
and promising technique in simulating air pollution
dispersion. A short look at other modeling method-
ologies will clarify the advantages of this relatively
new approach. In the past, most models for simulating
air quality dispersion have been Gaussian models or grid
models. Both have physical and numerical deficiencies,
however. Gaussian models strongly depend on plume
sigma parameters generally computed by characterizing
atmospheric diffusion using a series of "stability"
classes -- a questionable discretization of the contin-
uous turbulent properties of the atmosphere. Grid
models are more complex and require significant
computer storage and CPU time. Often, however, the
increased computations of grid models provide only
marginal and qualitative improvements in .dispersion
simulation. Even though, theoretically, many physical
conditions can be handled quite well by grid model
techniques (e.g., finite difference methods), they 1)
suffer from the practical problem of spatial and
temporal resolution limitations, a consequence of their
high operating cost, 2) sometimes show numerical insta-
bilities, and 3) above all, always have numerical errors
in the form of artificial numerical diffusion due to the
discretization of the advective terms of the dispersion
equations.

In this context, Lagrangian particle methods
are very appealing. Emitted gaseous material is
characterized by particles and each particle is "moved"
at each time step by pseudo-velocities, which take into
account the three basic dispersion components: 1) the
transport due to the mean fluid velocity, 2) the (seem-
ingly) random turbulent fluctuations of wind compo-
nents (both horizontal and vertical), and 3) the
molecular diffusion (if not negligible). With existing
computers (the next generation will be even better),
enough particles can be stored in memory (say, more
than a few thousand) to accurately describe the charac-
teristics of a single plume.

Dispersion simulation by Lagrangian parti-
cles has been called "natural" modeling. These models
do not need inputs of artificial stability classes, empir-
ical sigma curves, or diffusion coefficients that are
practically impossible to measure. Instead, diffusion
characteristics are simulated by attributing a certain
degree of "fluctuation" to each particle, using, for
example, the computer's capability to generate semi-
random numbers.

The basic advantages of this approach (e.g.,
see Lamb et al., 1979; Lange, 1978) are:
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o This method requires no grid network, thus
avoiding the artificial initial diffusion of a
point source in the corresponding cell and
the advection numerical errors.

o Lagrangian particle modeling is practically
free of restricting physical assumptions,
since all uncertainties are combined into the
correct determination of pseudo-velocities.

o Each particle can be tagged with its coordi-
nates, source indicator, mass, activity,
species and size, allowing computation of
wet and dry deposition, decay, and particle
size distribution.

o If chemistry is required, a grid can be super-
imposed and concentrations in each cell
computed by counting the particles of each
species, allowing the use of any reaction
scheme at each time step.

o The meteorological input required should be
very close to actual measured data. The
primary information needed seems to be
(Lamb et al., 1979) the variance of wind
velocity fluctuations and the Lagrangian
autocorrelation function, which can be
related to Eulerian measurements (e.g.,
Hanna, 1981).

Potentially, the method is superior in both
numerical accuracy and physical representativeness.
However, much research is still needed to extract, from
meteorological measurements and our theoretical
understanding of turbulence processes, the meteoro-
logical input required to run this model (i.e., the
pseu)do-velocities to move each particle at each time
step).

2. LAGRANGIAN PARTICLE DISPLACEMENT
In mathematical notation we can say that if

a particle is located in v’f'(tl) at t), its position at t,, will
be

Xt,) = gtl)+f ufxo, t]dt )
Y



where y is the "instantaneous" wind vector in each point
x(t) of the particle trajectory between t, and t,.

If y were exactly known at each point and
each instant, an emission release (puff or plume) could
be correctly simulated by using Eq. (1) with a sufficient
number of particles. Then, concentrations in a speci-
fied volume of air could be computed by simply count-
ing the number of particles in that volume.

Unfortunately, atmospheric  turbulence
makes u practically impossible to know, especially due

~

to its semi-random components caused by atmospheric
eddies. Moreover, even with highly accurate informa-
tion on y, the method would be extremely expensive,
due to the numerical computation for each particle of
the integral in Eq. (1), with dt sufficiently small.

To overcome these problems we propose to
consider the "equivalent" wind vector, 4.

t2
Ye =f2[5(t), t] dt/(t, - t;) (2
Y
which moves the particle directly from x(t)) to x(t,) in
the time interval (t;, t,). The problem is then to esti-
mate, from u measurements, an approximate value Qe
ofu..
~e
We know that, along the particle trajectory
in the interval (t 1’ t2), y can be expressed as the sum of
a constant value Q'L plus a fluctuation g_‘L(t), where the

subscript L indicates that these are Lagrangian values.
Therefore,

t2
Y = Yt f}:l_'L(t)dt (tz-tl)
Y

3

But if we have a sufficient number of
particles (e.g., a puff of 1000), we do not need to
correctly follow each particle but just to define an
algorithm for particle displacement computation which
gives an accurate particle density distribution. There-
fore, for example, we can define

O = 8o + Ye &

where U is our best estimate of U, e.g. the average
Eulerian wind vector at x(t 1), and y', is a ndiffusivity
velocity." In other words, ge (a smoothly variable term)

represents our deterministic understanding of the
average transport process, based on Eulerian wind
measurement interpolation or a meteorological model
output, while u', is a single artificial numerical

perturbation (different for each particle) which
approximates, only on a particle ensemble basis, the
integral term in Eq. (3).

2.1 Determining u'e

As discussed above, computing yje for each
particle during each interval (tl, tz) is the key problem

To this end, two
the

of Lagrangian particle modeling.
fundamental approaches can be followed:
deterministic and the statistical.
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A typical example of the deterministic
approach is given by the particle-in-cell method of
Lange (1978), where, after some manipulation of the
K-theory diffusion equation, we obtain

K
’l:['e = (- —C_)VC (5)
where K is the usual eddy diffusion coefficient and C
the concentration, computed as the number of particles
in the cell containing 5(t1). This method requires

partitioning the computational domain into cells and it
is able to duplicate K-theory dispersion with the impor-
tant feature of removing the numerical advection
errors associated with finite-difference solutions.

The statistical approach (Monte Carlo-type
models) certainly seems to be more flexible and appeal-
ing. According to the statistical approach, g‘e is a

semi-random component computed by manipulating
computer-generated random numbers. To perform this
computation, it has been generally assumed (e.g.,
Hanna, 1979a, 1981; Lamb et al,, 1979) that Eulerian
measurements of u can provide statistical information
on u e As we have tried to show, however, these two

parameters are not the same and further investigation
is required to fully assess this point.

As a first approximation, however, we can
accept the above assumption and use, for the diffusivity
velocity g’e, a statistical generation scheme based on

our understanding (and Eulerian measurements) of y. In
particular, Hanna (1979b) has shown that both Eulerian
and Lagrangian wind vector fluctuations 4 can be
described by a simple Markov process (autocorrelation

process of the first order)*
ul(t+ At) = R(AY) ul(t) + 't + AD)*¥, 6

where R contains the three wind speed autocorrelation

coefficients with lag At (one for each space dimension),
and u" is a purely random vector.

If we extend the form of Eq. () to u',, we
have

B‘e(tz) = Be(tz - tl)ge(tl) + B'e'(tz) (7)
where R _(t, -t l) contains the autocorrelations with lag

-y
vector.

of the u'_ components, and u' is a random
~e ~e

Equation (7) is the key formula for statistic-
ally computing u', which will simply be a recursive sum

of two terms -- the first, function of "previous" H«‘e of

the same particle, and the second purely randomly
generated. Since Eq.(7) will be computed
independently for each particle, two eventually
coincident particles at t; will have, in general,

*Actually, some authors (Watson and Barr, 1976; Lamb,
in press) have proposed an autocorrelation process of
the second order.

**[n this formula (and the following ones in Sections 2
and 3) each component of the vector on the left side is
computed using only the corresponding component of
each vector in the right side (scalar computations).



different displacements even if their past "history" is
the same -- something that cannot be obtained with
any purely deterministic computation such as Eq. (5).

To apply Eq.(7) we need the initial g'e(to)
for each particle at its generation time to (often
assumed to be a zero vector), and the computation of
B‘e and‘gg-

Due to the Lagrangian nature of Yesr R has
been often identified with BL’ the autocorrelations of
the Lagrangian wind vector Y- Ry can be related to
Lagrangian turbulence time scales, for example, by

Ry = o[-yt | (8)

where IL contains the two horizontal and the one

vertical Lagrangian time scales. Generally, Lagrangian
measurements of T, (or RL directly) are not available,

but empirical relations have been proposed (e.g., Hanna,
1981) to estimate l'L from Eulerian measurement.
Assuming ,9; a purely random vector with

zero-mean, normally-distributed independent compo-

nents, we have that % is completely characterized by
Sm i€, the standard deviations of its components. In

this case, taking the variances of Eq. (7), we obtain

2 1/2
Sur = Sy |1- Be (tZ - tl)

requiring Sy the standard deviations of i‘!’e which,

again, can be approximated by the standard deviations
of available Eulerian wind measurements Ug.

(9)

From the standard deviations g .« of Eq. 9)

it is easy, using commonly available computer
programs, to generate each particle's ’y; term to be
used in Eq. (7).

Be and Sy e in general, time-dependent

(but constant between t) and tz) and space-dependent.

Therefore, they can fully utilize a three-dimensional
meteorological input (Eulerian values) and can, at least
theoretically, simulate extremely complex atmospheric
diffusion conditions, otherwise impossible to treat with
other numerical schemes.

3. NUMERICAL SIMULATIONS

A computer program has been written to
simulate atmospheric diffusion with the statistical
approach described in the previous section by Egs. (7)
and (9). Figure | shows the dispersion rate (0 = 0, =
cry = crz) as a function of downwind distance, d, of an
elevated puff of 330 particles during homogeneous,
stationary conditions, with y; = (3, 0, 0 m/s,
Re=lr,r), 4= (0 9y 0) and At =1t, - t; =60
sec. Solid lines show the variation of o(d) with r (and
fixed US:O.Z mzs'z), while dotted lines show that

with o, (and fixed r = 0.7).
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Fig. 1 - Rates of increase of the standard deviation
of a puff as a function of the autocorrelation r and
standard deviation %, of particles pseudo-velocities.

Since we simulate an instantaneous puff
from a point source, the initial B'e(to) have been

assumed to be the same (a zero vector) for each
particle, which causes the low initial o values for high
r. Other authors (e.g., Hanna, 1979) have suggested
generating u',(t;) with a random distribution so that the

diffusion rate is not conditioned by their values.

The following important considerations der-
ive from the analysis of our preliminary numerical
simulations:

o with stationary and homogeneous turbu-
lence, 0 increase can be approximately ex-
pressed as a power law of d(o =ad"), even
though we sometimes have a small decrease
of b after a certain d (see Figure 1).

o different r values (from 0 to 1) give b values
in the range from 0.5 to 1.5, which charac-
terize dispersion regimes previously identi-
fied in puff diffusion theoretical and experi-
mental studies (Pasquill, 1974).

o o, values do not affect b.

o At variations seem to affect both a and b
(not shown in Figure 1).



A

These considerations seem to indicate (but
further numerical simulations are required) that, if we
want to reproduce exactly the same dispersion
conditions with a different At=1t, - t, we have to

modify o  (lower for higher At and vice-versa). This is
inconsisteht with both Eulerian or Lagrangian
formulations, where r should depend upon At, as in
Eq. (8), and o4 should not. This inconsistency seems to

provide the numerical confirmation that gje has

different  statistical  characteristics  from u
measurements and the problem of inferring B'e from u
is still open.

4. A NEW STATISTICAL SCHEME FOR
CONSIDERING WIND SHEAR EFFECTS

Eulerian measurements have shown that
wind shear effects cause a non-zero (negative) correla
tion between vertical and along-wind fluctuations. A
correct statistical representation of u', should take this
phenomenon into account. .

With the notation u' e(’t) =(u'(t), v'(1), w'(t))
and u~"e(t) =(u"(t), v'(t), w"(t)), the following scheme
can be used

u(ty) = ¢ u'(t)) + u(t,) (10)
/

v'(tz) = dz\v'(tl) + v"(tz) (11)

(12)

wit,) = &5 w'(wuz) )

which is similar to Eq. (7), but with the new Eq. (12) for
handling the correlation r u between u' and w'. After

some analytical manipulations of Egs. (10) through (12),

and using the notations Be(tz - tl) =(r v f w), Su

(ou" am owl)’ and g = (oum g OW")’ we obtain

d)l = l'u (13)
¢2 = rV (14)
T'w ™ %1% uw
¢y = ——"""3 3 (15)
L-¢) " rhw
& = Tuw '_ﬂw' (-4 ) (16)
4 o a- cblz rtw)
02, = o2 (-4} (17)
03.. = 03. (- ¢§) (18)
02, =02, (1-63)- & o}y (19)

-2 ¢1 ¢3 ¢uruw°u‘°w'
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which allow the application of the statistical scheme of
Egs. (10) through (12) if the additional input r . is

available. Vertical profiles of Eulerian r uw values are

now available from advanced meteorological towers.
We also expect advanced Doppler instrumentation to
soon provide this important parameter on a regular
basis.

The entire scheme above has been numeric-
ally tested and it has been verified its capability of
correctly producing E:e components with any degree of

autocorrelation R and cross-correlationr, .
a~e uw

5. CONCLUSIONS

This study clarifies the difference between
wind measurements and pseudo-velocities to be used
for Lagrangian particle modeling techniques. A new
Monte Carlo scheme is also proposed for taking into
account wind shear effects in the atmospheric boundary
layer.
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