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INTRODUCTION
Simulation modeling is a problem of numerical discretization
of a physical system. Such discretization, performed through
computer experiments, is particularly important in those cases where ('

physical theories need to be investigated or verified but laboratory
experiments are unable to reproduce the complexities of the real
world (e.g. stellar evolution).

In the last few decades, under the strong influence of a huge
development of computational capabilities, discretization methods
have been a major subject of investigation and development. Four
major computational techniques have been developed and applied up
to now:

- finite difference methods (Richtmyer and Morton, 1967)
- finite element methods (Strang and Fix, 1973)

- boundary element methods (Brebbia, 1978)

- particle methods (Hockney and Eastwood, 1981)

The last technique probably seems today the most advanced
available numerical algorithm and, even more important, the most
promising tool for numerical simulations with future generations of
computer systems.

Using particle models, the temporal evolution of a physical
system is described by the dynamics of a finite number of interacting

(¥) On leave of absence from AeroVironment, Inc., 145 Vista Ave.,
Pasadena, CA 91107, U.S.A.




pafticles. Therefore, such models are typically Lagrangian ones,
while, for example, finite differcnce methods are purely Eulerian
representations of physical systems.

Three main types of particle models can be derived (Hockney
and Eastwood, 1981):

- particle-particle (PP) models, where all interaction forces
between particles are computed at each time step

- particle-mesh (PM) models, where forces are computed using
a field equation (on a grid) for the potential

-~ PP-PM (or P3M) models, a hybrid approach where interparticle
forces are splitted into a short range component (computed
using the PP method) and a slowly varying one (represented
in mesh system by the PM method).

Particle models can be purely deterministic or (partially)
based on statistical methods. In the first case the simulation
of particle time evolution is unique. In the second case, Monte
Carlo techniques are used to produce semi-random "perturbations",
and, therefore, model outputs represent just a realization from
an infinite set of possible solutions.

Length and time scales (as in all discretization systems) play
an important role in particle models. In particular, the relation
between the actual physical particles (or elements) and the computer
model simulation particles is a important factor for the inter-
pretation of the simulation results. In general, three possible
cases can be found (Hockney and Eastwood, 1981) :

= a one-to-one correspondence between actual and simulated
particles, as, for example, in molecular dynamics simu-
lation

- a description of fluid elements (position, vorticity) as
particles, as, for example, in vortex fluid simulations,
where the correspondence to physical particles (molecules)
is totally lost

= the use of "superparticles", i.e., simulation particles
representing a cloud of physical particles having similar
characteristics.

Particles models have been mostly applied for simulating (and
understanding) the spiral structure of the galaxies, for plasma
dynamics simulation and for obtaining realistic representations of
turbulence in fluid. Air pollution dispersion by particle methods
is at its infancy, even though interesting studies have been
published in the last few years (e.g., Watson and Barr, 1976;

Hanna, 1979a; Lamb, et al. 1979a; Lange, 1978; Patterson et al. 1981).
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This paper, after a description of the discretization problems
related to air pollution diffusion simulation by particles, presents
a new Monte-Carlo scheme especially designed for handling wind shear !
effects in the atmospheric boundary layer. Finally, a brief discussion | !

: . . . o q o - f 3
18 provided concerning the suitability of new advanced meteorological iy
lnstrumentation fe.g., the Doppler acoustic sounder) in providing / 7&4
data input for air pollution particle simulation models. g
AIR POLLUTION SIMULATION BY LAGRANGIAN PARTICLES l %’

"The diffusion of a substance released into a turbulent flow J'?
cannot be described by any one model or theory" (Hunt, 1981). A "
short look at all available theories and numerical techniques can vw !

easily convince us that the above statement is basically true:

= Gaussian models strongly depend on sigma parameters generally '455
computed through a questionable discretization (stability ' et
classes) of atmospheric turbulence status, or by using semi- e

empirical formulas.
- Grid models have a high operating cost, and moreover, are
affected by numerical problems (ingtabilities, artificial
numerical diffusion errors) and physical limitations (e.g.,
the K-theory is not appropriate for describing large tur-
bulent eddies).
- Particle models are still under development and require :
meteorological Lagrangian measurements which are generally
unavailable and, however, extremely difficult to make.

Nevertheless, Lagrangian particle methods are very appealing.
Emitted gaseous material is characterized by particles and each
particle is "moved" at each time step by pseudo-velocities, which
take into account the three basic dispersion components: 1) the
transport due to the mean fluid velocity, 2) the (seemingly) random
turbulent fluctuations of wind components (both horizontal and
vertical), and 3) the molecular diffusion (if not negligible).

With existing computers (the next generation will be even better),
enough particles can be stored in memory (say, more than a few thou-
sand) to accurately describe the characteristics of a single plume,
or, better, an instantaneous puff release. Particle resolution
plays, in fact, an important role. A one-hour simulation of an
industrial emission of 1 kg/s of S0 from a stack emitting 20 m3/s
of gases will require, for example, 3600 "particles", each represen-
ting, in reality, a growing puff containing 1 kg of SO and having
an initial size of 20 m3. The behaviour of this "superparticle"

is certainly different from that of a single SO, molecule. (*)

'
1
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(*) Puff Modeling (Zannetti, 198la) is a powerful Lagrangian
technique for treating transport and diffusion of such super-
particles.




Nevertheless, we must keep in mind that, in air pollution 3
modeling, we do not need to follow precisely each molecule in the Y
atmospheric turbulent flow, but just to define an algorithm for
part?cle displacement computation which gives an accurate earticle
density distribution. In mathematical notation, if a particle 1s _
located in :(tl) at t,, its position at t, will be l?f

t
X(t)) = x(t)) + {2 g[g(t). t]dt (1)
1

where ¥ is the "instantaneous " wind vector in each point x(t) of

the particle trajectory between £ and tz.

Atmospheric turbulent properties make u practically impossible
to know, especially due to its semi-random components caused by

atmospheric eddies. But the "equivalent" wind rector u_ can be
considered ‘ - e

t ' "
o= J? k[«’é“)' c] def(e,mt)) (2) g
t . .
1

which moves the particle directly from ﬁ(tl) to g(tz) in the interval
(tl, tz). The problem is then to estimate Mo from 4 measurements,

keeping in mind that Re must approximate the integral term in Eq.
(2) only on a particle ensemhle basis. For example, we can define

Re = ’Ee * &é 3)

where u_ is our best estimate of the average Eulerian wind vector
(cranspgrq at {(tl), and gé is a "diffusivity velocity". 1In other
words, é (a smoothly variable term) represents our deterministic
understanding of the average transport process, based on Eulerian
wind measurement interpolation or a meteorological model output,
while %é is a single artificial numerical perturbation,

Since, in Eq. (3) ée is supposed to be known, computing %é 8
is the key problem of Lagrangian particle modeling. Two fundamen-
tal approaches can be followed: the deterministic and the statisti-
cal ones.

The deterministic computation of &é

A typical example of the deterministic approach is given by
the particle-in-cell method of Lange (1978), where, after some




manipulation of the K-theory diffusion equation, we obtain
u' m (- R ) e
Re = U (4)

wherg K is the usual eddy diffusion coefficient and C the concen-
tration, computed as the number of particles in the cell containing
:(tl). This method requires partitioning the computational domain

into cells and it is able to duplicate K-theory dispersion with the
lmportant feature of removing the numerical advection errors associ-
ated with finite-difference solutions.

Using this method, the motion of a single particle will be
affected by the time-varying concentration field, i.e., by the
positions of the other particles (PM model)

The statistical computation of &é

The statistical approach (Monte Carlo-type models) certainly
seems to be more flexible and appealing. According to the stat-
isticgl approach, &é is a semi-random component computed by mani-

3
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pulating computer-generated random numbers. To perform this
computation, it has been generally assumed that Eulerian measure-
ments of ¥ can provide statistical information on gé. However,

these two parameters are not the same and further investigation
is required to fully assess this point.

As a first approximation, however, we can accept the above
agsumption and use, for the diffusivity velocity gé a statistical
generation scheme based on our understanding (and Eulerian measure-
ments) of X. In particular, Hanna (1979b) has shown that it is a
plausible assumption to describe both Eulerian and Lagrangian wind
vector fluctuations by a simple Markov process (autocorrelation
process of the first order).

If we extend this assumption to gé, we have (*)
Re(fp) = Ro(Eymty) o(e)) + picey) )

where Ke(IZ-tl) contains the autocorrelations with lag At = t2-t1

of the y' components, and y" is a purely random vector.
}ée p R'c 1 p y

(*) 1In this formula (and the following ones) each component of the
vector on the left side is computed using only the corresponding
component of each vector in the right side (scalar computations).

-




function of "previous" us of the same particle, and the second
purely randomly generated. Since Eq. (5) will be computed indepen~
dently for each particle, two eventually coincident particles at

t, will have, in general, different displacements, even if their
past "history" is the same. Using this approach the motion of a
particle is hot affected by the position of the other particles
and, therefore, this numerical algorithm ig extremely fast since

no interacting forces need to be computed.
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To apply Eq. (5) we need the initiagl &é(to) for each particle
at its generation time ty (often agsumed to be a4 zero vector) and
the computation of Qe and gg.
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Due to the Lagrangian nature of Xe» R has been often identified: ‘gi
with R, the autocorrelations of the Lagrangian wind vector RL- EL W}

can be related to Lagrangian turbulence time scales, for example, by

R = exp [-(tz-tl)/IL] ®)

where {L contains the two horizontal and the one vertical Lagrangian
time scales. Generally, Lagrangian meagurements of IL (or EL

directly) are not available, but empirical relations have been pro-
posed (e.g., Hanna, 1981) to estimate EL from Eulerian measurement.

Assuming gz a purely random vector with zero-mean, normally-
distributed independent components, we have that u; is completely )
characterized by Qurs i.e., the standard deviations of its compo~- I
nents. In this case, taking the variances of Eq. (5), we obtain

T = gu.[l - gi(cz—cl)]”z 0

requiring the knowledge of g,'» the standard deviatjons of gé which,

again, can be approximated by the standard deviations of available
Eulerian wind measurements.

]

From the standard deviations gt °f Eq. (7) it is easy, using $.

. ‘ .

commonly avaijzpje computer programs, to generate each particle's 'ﬁ}f
Je term to be used in Eq. (5). i

5e and o, are, in general, time-dependent (but constant
between £ and t2) and space—dependent.» Therefore, they can fully




utilize a three-dimensional meteorological input (Eulerian values)
and can, at least theoretically, simulate extremely complex atmos-
pheric diffusion conditions, otherwise impossible to treat with
other numerical schemes.

Conclusion
~oaeLusion

Dispersion simulation by Lagrangian particles has been called
"natural” modeling. These models do not need inputs of artificial
stability classes, empirical sigma curves, or diffusion coefficients
that are practically impossible to measure. Instead, diffusion
characteristics are simulated by attributing a certain degree of
"fluctuation" to each particle, using, for example, the computer's
capability to generate semi-random numbers.

The basic advantages of this approach (e.g., see Lamb et al.,
1979a; Lange, 1978) are: '

- Compared with grid models, this method avoids the artificial
initial diffusion of a point source in the corresponding
cell and the advection numerical errors.

- This method is practically free of restricting physical
assumptions, since all uncertainties are combined into the
correct determination of pseudo-velocities.

= Each particle can be tagged with its coordinates, source
indicator, mass, activity, species and size, allowing
computation of wet and dry deposition, decay, and particle
size distribution. .

- 1If chemistry is required, a grid can be superimposed and
concentrations in each cell computed by counting the par-
ticles of each species, allowing the use of any reaction
scheme at each time step (%),

= The meteorological input required should be very close to
actual measured data. The primary information needed seems
to be (Lamb et al., 1979a) the variance of wind velocity
fluctuations and the Lagrangian autocorrelation function,
which can be related to Eulerian measurements (e.g., Hanna,
1981).

(*) A rigorous coucentration computation should not just add up
the number of particles in a given cell at a given time.
In fact, concentrations should be computed using the total
time spent by each particle in the receptor volume during
each time step (as in Lamb et al., 1979b). Moreover, nonlinear
chemistry computations (at least for fast reactions) should
take into account the effects on the reaction rates of con-
centration turbulent fluctuations, which seems extremely
complicated using Lagrangian methods.
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Potentially, the method is superior in both numerical accuracy
and physical representativeness. However, much research is still
needed to extract, from meteorological measurements and our limited
theoretical understanding of turbulence processes, the meteorological
input required to run this model (i.e., the pseudo-velocities to
move each particle at each time step).

THE TREATMENT OF WIND SHEAR EFFECTS

Shear flow effects in the atmospheric boundary layer are
characterized by the following three factors:

- Vertical variation of the average wind vector (changes in
both speed and direction),

= Vertical variation of the intensity of wind fluctuations
(especially vertical fluctuations).

= Zero correlation between the along wind and the cross-wind
fluctuations. '

- Negative correlation between the along wind and the vertical
wind fluctuations.

According to the above considerations, derived from the analysis
of Eulerian wind measurements, we can expect that a correct compu-
tation of u. in Eq. (3) will incorporate the first factor in Re

and the other three in gé. Therefore, a need exists to generate

cross correlated random velocity components for gé, and not just

independent components as in Eq. (5). To this end, a new Mq?te-
Carlo method has been anticipated in Zannetti (1981b) which is
fully discussed below.

Let us consider a special reference system (SRS) where the
x axis, for each specified altitude z, is chosen to coincide with
the horizontal component of Qe. Then, with the notation

~

gé(t) = [u'(t), v'(t), w'(t) ' (8)

u (t) = Ef'(t). v'(t), W"(t)J 9)

the following scheme can be used for gé

u'(tz) = ¢ u'(tl) + u"(tz) (10)

.
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VI(E)) = 0y V() vy (11)

w'(cz) = ¢, w'(tl) * 9, U'(tz) + w"(tz) (12)

which is similar to Eq. (5), but with the new Eq. (12) for handling
the correlation LA between u' and w'.

If we multiply Eq. (10) by u'(tl) and then take the average
<> we obtain (u" is a purely random component)

-

<u'(t,) u'(t.)> <u'(t.) u'(f )>
¢ - i . ; 2 - ) (13)
<u'(e))> o\ v

where ru,(At) is the autocorrelation of u' with time lag At = t,-t

1‘
In an analogous way, working on Eq. (11), we obtain
<V'(t1) V'(t2)>
¢, = 5 = r,(at) (14)
OV'
where L is the autocorrelation of v'.
Multiplying Eq. (12) by w'(tl) and taking the average <>
we have
r ,(At) 02 = ¢ 0%, + ¢, ¢, r 0) o, 0 (15)
w' w' 3w 1 % "u'w' u' w'

where L is the autocorrelation of w' and ru.w.(O) is the cross
correlation (with no time lag) between u' and w'.

Multiplying the corresponding members of Eqs. (10) and (12)
and taking the average <> we have

2
ru'w' (0) Uul owl = ¢1 ¢3 rutth(O) Uul Owl + ¢4 oul (16)
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(16) Teépregent 4 8systen of two €quationg in two
Unknowng which 8lves the solutio
- 2
< T, (ar) ¢, Fary (0)
¢3 2- (17)
1~ ¢1 ruowl(o)
ru'w'(O) ow'[; " ¢1rw,(Até]
4 = w10 (18)
ou l[l = ¢1ru'wo (O)]

g the Varianceg of Eqs, (10) - (12) we obtajip
€ varianceg of the Purely randonm fluctuations to be 8enerateq at
€ach tipe step -
2
G = a2, (1 _ ¢)) (19)
2
oz, = o0 (1 - 42 (20)
o2, 2,1 - ¢2) - 07 o2 " 24 9.4 » ®o , ¢ (21)
w'" w' 3 4 "y 173 ¢, u'w' u' Sy
Eqs, (10)-(12) €an then pe applied Using Eqg, (13) (14),
(17)-(21) if the Proper meteorologlcal input LI 1 T, Fturs
u' 94, 0, jg availap]e at each altitude In Such Case, where
the Scheme of Eqs, (10)~(12) is ugeg instead of Eq. (5), r 1.y 18
the only additional input requireq, v
The entjre 8cheme above hag been numerically tested apg it hag
been verifijeq itg capabillcy of Correct]) producxng gé Componentg
wWith any acceptap]e degree of autocorrelacion Qe
' Ee = (ru,, r ,r ') (22)
and crogg Correlatijop r
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METEOROLOGICAL INPUT

As previously discussed, Monte-Carlo techniques require a
suitable meteorological input. Meteorological tower and Doppler
acoustic sounder instrumentations are the best sources of such
data. They provide, at different altitudes and during a selected
time interval (e.g., 20 minutes), the average wind vector and the '
standard deviations of the wind fluctuations with respect to a ' .8
fixed orthogonal system (x, y, z). Therefore, in such coordinate
system, at a certain altitude z, the average measured wind vector

-

will be Y )
g = (ux: uys uz) (23) ‘(;
o i3

s

-

and Oy * Oy » O, will be the measured standard deviations cf the
X 'y z

wind fluctuations. If we assume that such Eulerian measurements

are a good representation of the statistical properties of Ko

then we can firstly say that

R

Ne & (24)
0, = @ (25)
w u

Z

However, as introduced in the previous chapter, we often need the

horizontal wind fluctuations in a special reference system (SRS).

Therefore, wind fluctuations in (x, y, z) must be projected into -
such system through a horizontal rotation of an angle © "

u

& = arctg Y (26)
ux

Taking the variances of such projected wind fluctuations and

remembering the important property that, in the SRS, the two hori-
zontal wind fluctuations are non-correlated, we obtain

-2 9 -2 2
Ux Ou = Uy Ou
T " e 27
u =u




' provide the random fluctuations of each particle at each altitude.

4 .
-2 3 -2 2
x % Yy %
02 - y X
v' -2 -2 (28)
u’ ~-u
X y

that together with Eq. (25) can be used in Eqs. (19)-(21) to

In flat terrain condiiions, Doppler or tower measurements can
be horizontally extrapolated, therefore providing an appropriate,
fully three-dimensional input for particle modelling using stati-
stical Monte-Carlo techniques.

CONCLUSIONS AND POSSIBLE DEVELOPMENTS

~ -
=

Many aspects of the above described techniques need further
investigation. As already discussed, a major problem is the
utilization of available Eulerian measurements for inferring Re

i .
propgrt es _ -

Moreover, the assumption of no co.:elation between the two
horizontal components in the SRS, is acceptable only for small
time intervals not affected by systematic horizontal wind direction
meandering across the average value Q . If these conditions are
not met, persistent, highly correlated, values between the two
components are often measured, unless the meandering factor is
preliminary removed from wind measurement data.

To solve all these problems, ad-hoc tracer experiments should
be designed specifically for evaluating and validating particle
diffusion theories.

It is true, nevertheless, that particle models can easily
reproduces under specific simplifying assumptions, the diffusion
results obtainable by other modeling techniques, as the Gaussian
model and the K-theory. Particle modeling "natural" approach to
air pollution simulation seems, therefore, the most suitable

technique for future air pollution modeling research and development.
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