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Design of a Framework for the Development of a
Comprehensive Modeling System for Air Pollution

Distributed computer systems hold the potential to revolutionize the
current approach to environmental modeling. This report presents the
design of the framework for developing a comprehensive modeling
system (CMS) for air pollution. This system would provide a platform
for modeling pollutant emissions, atmospheric physics and chemistry,
and the impact of pollution. The system would also provide a readily
accessible interface, a powerful set of analysis and decision support
tools, and a method to make maximum use of available computation-
al resources.

BACKGROUND  Air quality models currently address a variety of environmental
issues such as emission permitting, ozone control, acid deposition, particulate -
matter, air toxics, emergency planning and response, human exposure, and risk
assessment. Each issue is treated with different sets of modeling tools of varying
levels of scientific detail and complexity. The benefits of the CMS would be mulii-
fold- the latest scientific models would be available, the user-friendly system inter-
face would greatly increase the number of potential users and their access to more
sophisticated modeling tools, policy decisions would be based on the latest science,
and the costs of mode! applications would be greatly reduced. This project, spon-
sored by the Consortium for Advanced Modeling of Regional Air Quality (CAMRAQ),
presents the framework for CMS development.

OBJECTIVE ,
« To create a tool for system-assisted, user-friendly use of advanced air quality
models in order to facilitate application of the best science in regulatory decisions.

« To provide a software platform for the application and incorporation of the most
advanced air pollution models.

APPROACH In designing a framework for the CMS, the project team took into
account users' needs, both those explicitly mentioned in a user survey conducted
at the beginning of this project and ones dictated by experience and expectations.
The ultimate CMS would be developed through a series of increasingly comprehen-
sive prototypes. Particular attention would be paid to the mechanisms the frame-
work provides for rapid adaptation to changes in user requirements and methods,
transitions in regulatory mandates, and the explosive growth in computational
technologies.

RESULTS This report provides design, implementation, and management plans
for the CMS. By design, users would access the CMS system through a standard
graphical user interface (GUI), which would include visualization sofiware for dis-
playing two- and three-dimensional representations of input and output data. The
interface would also include geographic information system (GIS) capabilities for
accessing and displaying data according to geographical location. Powerful statisti-
cal packages would be available for summarizing, synthesizing, and analyzing data
as well as extensive on-iine help files to minimize or avoid reliance on operator's
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manuals. The fully developed CMS would be accessible from the users
workplace through a Unix workstation or PC-based computer interface.

The GUI would allow the user to point and click with a mouse to select a
model configuration (emissions, rmeteorological, dispersion, or air quality)
consistent with the intended application. If desired, the user could also
select individual modules (preprocessors, chemical mechanism, boundary
layer treatment, advection scheme) other than the default set. Having con-
figured the model, the user could then select the geographic domain and
time period. Finally, the user could choose the corresponding emissions,
meteorology, air quality, topography, land use, and demographic data,
often from a geographically distributed archive via the Internet.

EPRI PERSPECTIVE The existing infrastructure and technology for
developing, evaluating, and applying regiona! air guality models present a
multitude of difficuities and obstacles to their convenient use. The realism
of their simulations is generally ill-defined. Their inner workings are
opaque. The breadth of the issues they address is narrow. These and
related problems could be significantly alleviated if a new paradigm for air
quality modeling were established: Use a comprehensive modeling sys-
tern that explicitly takes into account existing impediments to reliable and
efficient modeling. The CMS envisioned would provide emissions model-
ing, meteorological modeling, air quality medeling and characterization,
decision support, and report preparation assistance. With software tools
and hardware products that would place it at the cutting edge of computer
and atmospheric sciences, the CMS would become the regulatory and
research platform of choice for air quality modeling.
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ABSTRACT

This report presents a design of a framework for a Comprehensive Modeling System
(CMS) for air pollution — a project sponsored by the Consortium for Advanced Modeling
of Regionat Air Quality (CAMRAQ).

In our design, the CMS user sees the system through a series of interactions with a
standard graphical user interface which promotes the effective use of the system by
even uninitiated users. The fully-developed CMS would be accessible from the user’s
workplace through a computer interface, either workstation (Unix) or PC-based.

In our implementation plan, the CMS will be developed as a series of increasingly
comprehensive prototypes and products. Each version will present new air quality
modeling functionality to the user.

In our management plan, we define a clear management structure and precise
allocation of responsibilities. We also propose a certain degree of planned redundancy
and the use of task monitoring teams, to assure a cost-effective performance.

The design includes a series of six development efforts during the period 1995-1999,
followed by a final effort for periodic maintenance and upgrade, from 2000 on.

1ii



v



PREFACE

MESSAGE TO THE READER

The Consortium for Advanced Modeling of Regional Air Quality (CAMRAQ) is
sponsoring an initial effort toward the development of a Comprehensive Modeling
System (CMS) for air pollution. This framework design report was prepared as the final
product of this initial effort.’

A previous concept paper report (Zannetti et al., 1995; hereafter referred to as CP) was
prepared as part of this project. The CP was a pilot document to set the stage for the
full design of the CMS. In this preface, we will present a summary of concepts and
information that have been already presented in the CP. Therefore, the reader already
familiar with this project may choose to move directly to Chapter 1. We enclose the
Table of Contents of the CP as Appendix A. A copy of the CP report can be obtained by
contacting the first author at the address provided on the cover page.

WHAT IS A CMS?

The CMS must provide an infrastructure that helps its users to do their jobs better and
faster, whether those jobs be regulatory and policy analysis, source impact
assessment, understanding atmospheric chemistry and physics, or performing
atmospheric research studies. As such, the CMS has been designed to provide the
following:

' CAMRAQ has been created to provide an organizational structure for the development of a CMS.
CAMRAQ's basic intent is to coordinate and pool individual model-development efforts of numerous
organizations in a manner that leads to maximized progress, mutual benefits, and minimum
duplication. CAMRAQ is dedicated to the development and application of regional air-quality models
for practical planning and policy analysis. It is composed of cooperating representatives from
government and industry and has this primary objective:

“To develop, evaluate the performance of, and apply comprehensive modeling systems
(CMS's) for the analysis of air-quality issues on regional and smaller scales.”

Additional information on CAMRAQ's approach and goals can be found in Hanna {1992}, Hansen
(1992), and Hansen et al. (1994}.



1. A platform - for modeling pollutant emissions, atmospheric physics and
chemistry, and the impact of pollution — in as scientifically sound a fashion as
is desired or possible.

2. Areadily accessible interface, so that its use is a benefit, not a distraction.

3. A powerful set of analysis and decision-support tools, be they graphical,
visual, economic, or scientific, including report preparation.

4. A method to make maximum use of the available computational resources,
including CPU power, disk storage, and communication systems.

The CMS has been designed in a way that facilitates its continuous evolution with
science, computer capabilities, and user needs.

WHAT SHOULD A CMS DO?

Palo Alto, 7 April 1999. The user sits in front of an Apple-IBM Penta iil
computer screen. The screen shows a stylish CMS logo and several
other buttons. By issuing a voice command to the system, or clicking the
button Beginners click here, a series of windows are displayed. These
windows contain detailed information sections and an animated user's
guide to describe the entire system. By clicking the button Education a
new series of “windows” and “chapters” are available. These sections are
connected to CD's, laser disks and multimedia devices and provide, on
the Penta /il screen, interactive education tools on the subjects of
atmospheric sciences, air pollution, laws/regulations, simulation modeling,
and databases. A special Communication button allows the user to
communicate, via user-friendly interfaces, with library databases,
meteorological/air quality databases, and other users.

By clicking the CMS Regulatory button, the user accesses a subset of the
CMS system in which only modeis and techniques that have received
some regulatory approval are available. The use of these models is
“locked,” in the sense that they can only be used with computational
options that are acceptable to the regulatory agencies. Regulations of
different countries (USA, Canada, ECC, Japan, etc.) can be selected,
therefore locking the execution of the simulations under different
regulatory constraints. By clicking the CMS full set button, the user
accesses the entire simulation system. Through a password and a voice
recognition check, a user-developer is allowed to access the master
version of CMS (in remote computer storage) and modify/add/update
modules and functions.
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A typical CMS session consists of a CMS-guided computer simulation and
“report” preparation. The user defines the computational domain, the
simulation period and other user-specified options. CMS assists the user
in performing a sequence of simulations and choices to calculate emission
data, meteorological fields, transport and diffusion scenarios, chemical
reactions, dry and wet deposition, and some adverse effects of air
poilution, such as visibility impairment. Any step can be fully visualized by
superimposing input/output data on geographical information using a
Geographical Information system (GIS) and full three-dimensional (3D)
views (in a fly-through fashion). A special Real-time button allows real-
time simulation for emergency response of accidental releases, if proper
connections are made to access meteorological and other data on-line. At
any time the user can select input/output data and ask CMS to perform
special calculations and analyses in different computational environments
(such as new versions of Mathcad, Mathematica, Spyglass, Systat, etc.)
on the Penta Il screen.

What is described above illustrates the first and, by far, the most important goal of the
CMS — to let the computer do the work. In the crudest sense, this means more complex
and more sophisticated computations, but this is only the tip of the iceberg. Far more
important is to use the computer to compile, cross-reference, and comprehend
intentions. It means using the computer/CMS to eliminate the tedium of job decks (or
scripts) with their rigidly-defined sequences and syntax, to rid ourselves once and for all
of the tyranny of incomprehensible file names, directory paths, file structures, and the
other heirlooms of the age when computer time was more valuable than people’s time
and computers and computer models were run by a specially trained crew of acolytes.
The goal of the CMS is as much a manifesto as a plan; it is meant to be revolutionary,
not incremental.

Distributed computer systems offer the potential to revoiutionize the current approach to
environmental modeling. The proposed enabling technologies include high-
performance heterogeneous computing systems, advanced software environments,
parallel architectures, and networks with data exchanges on the order of gigabytes per
second (GB/s). These developments offer the possibility not only of increasing the
resolution of current models but also of providing the power needed to perform
systematic sensitivity and uncertainty analyses, assimilate observational data, and
incorporate more realistic treatment of the underlying physical and chemical processes.
Research needs to be carried out to improve the current models, provide the mapping
onto advanced architectures, and create a flexibie software environment that will enable
widespread use of the tools.

In summary, the CMS must include the best science and be scientifically credible;
tacilitate control strategy planning; be readily extensible; be easily used; take
advantage of evolving computational environments: be robust; and be able to interact
with and benefit from other modeling systems, such as EPA’s Models-3 (Novak et al.,
1994: Dennis et al., 1995).
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INTENDED USERS OF THE CMS AND USER REQUIREMENTS

The CMS has been designed to be used both by regulatory users and researchers. By
regulatory users, we mean the regulated entities, the environmental consulting firms
they employ, and the regulating agencies, both at a local and national level. By
researchers, we mean those who work to develop new modeling and analysis
techniques and apply the latest techniques to gain new scientific insights.

Regulatory Users

For regulatory users, it is intended that the CMS will become their “standard” software
environment for air quality modeling. Our initial thrust will be toward those regulatory
situations that can most benefit from the use of sophisticated 3D models. This class of
models has been under-used in the past, because of real or perceived onerous
requirements for either data sources, computing hardware, or user expertise. We see
three main areas that could be impacted by greater use of 3D models: 1)
photochemical smog calculations in support of State Implementation Plan (SIP); 2) the
analysis of the impact of accidental or planned release of hazardous materials: and, 3)
site permitting studies.

For photochemical smog simulations, the use of 3D models has become an accepted,
established fact. Also, there appears to be a lot of interest in going beyond the
Gaussian plume approach for emergency preparedness, as the overly-conservative
estimates (obtained when using highly simplified models) have the potential to cost
industries huge amounts of money over the next few years. The other area that could
be impacted is that of site permitting. The study methodologies and data requirements
for these three cases are quite different, yet there are many shared requirements.

The regulatory user needs an integrated 3D graphical environment for the analysis and
synthesis of all relevant spatially-referenced data, including input or set-up data and
model outputs. This could include meteorological, emissions, air quality, topographical,
land use, engineering, and architectural data. The ability to explore multiple datasets
simultaneously in a highly interactive environment is crucial in identifying their mutual
relationships and in weeding out inconsistent or implausible data. The users, for
example, must be able to set a flag identifying such data as bad from within this
graphical environment.

As far as photochemical modeling is concered, regulatory modeling is making a
transition from the use of simple box models, such as EKMA, to 3D advection and
diffusion models with chemical reaction algorithms of varying completeness. The most
frequently used model is the Urban Airshed Mode! (UAM-IV). The use of more state-of-
the-art models outside of research applications is limited to a small number of high-
profile cases.
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Virtually all of the dispersion modeling related to permitting is currently done using
straight-line Gaussian models, such as the Industrial Source Complex (ISC) model.
Representation of chemical processes is either nonexistent or simple (first-order) decay
at best.

Regulatory users would greatly benefit from the use of 3D particle and puff models {and
the datasets required to drive them). The ability to simulate plume dynamics in the
‘presence of thermal circulations (or shear, or fumigation, or spatially-variable stability,
for example) is critical to many scenarios. There is also the need for beiter
representation of chemical processes in the plumes. Also, the use of wind data
interpolated from models for running the ISC model would be useful in cases of
questionable representativeness of the nearest available meteorological data.

Regulators require decision support and information to develop and evaluate air quality
improvement programs. This information includes emission control levels, technologies,
costs, and their associated impacts. In this mode, the air quality, emission preparation,
and meteorological models act as black boxes providing the link between control
technology application and the expected impacts. The types of impacts that should be
included in such analysis (and thus, in the CMS) include economics, air quality
(including compliance demonstration), heaith effects, and welfare.

One attribute of the CMS will be the ability to formulate optimal control strategies for
regulatory users. In this case, “optimal” will be user-specified (e.q., least cost, least cost
with specific constraints, meeting a standard and minimizing exposure, etc.). One could
and should imagine asking the CMS to formulate a strategy for, say, the Northeastern
US subject to certain constraints and data (e.g., a least-cost strategy to meet the air
quality standard using known technologies), and the CMS would specify the location
and costs of the applied technologies, and the expected benefits in terms of air quality
and welfare.

The ability to generate reports is particularly relevant to the design of the CMS for
regulatory users. Users must be capable of easily exporting CMS-generated information
into other software packages, such as word processors and spreadsheets. More
importantly, the CMS will be capable of piloting the execution of other software
packages (e.g., Microsoft Word and Excel) to produce quality reports.

Within the regulatory community, PCs are the dominant computer platform, with a
relatively small number of practitioners working on Unix workstations. Some state
agencies may have a group that deals with ozone issues that has acquired a Unix
system, and of course, some consulting firms speciaiize in ozone issues and have
therefore become Unix literate, as, in the past, only Unix systems had the operating
system and processor support to tackle photochemical modeling. But the number of
Unix users is very small compared to those who use PCs and work primarily with the
EPA’s UNAMAP set of models such as the ISC model.
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Research Users

Researchers will use the CMS to make their time spent doing modeling studies and
developing models more productive. By taking care of many of the repetitive aspects of
a modeling project and providing standards for development of computational modules,
the CMS will allow them to concentrate their attention on those aspects of the problem
relevant to their research. '

The primary focus of this group is research into scientific phenomena, modeling
approaches, numerical methods, and analysis techniques. This often requires more
complete parameterizations of physical processes like turbulent mixing or chemical
reactions. This often leads to very large memory and processing speed requirements.
In many cases, the need is for finer model grid spacing to resolve important flow
features like sea/lake breezes and topographically induced or influenced flows. Higher-
resolution simulations, over ever-larger domains, place tremendous demands on
system resources.

For this group of users, access to fast computers with lots of RAM is often the over-
riding need. This is not to say that the benefits of a productivity-enhancing tool like the
CMS are not also important. Inevitably, significant percentages of a project's time get
swallowed up dealing with issues, such as model set-up and data exchange between
models. It can be frustrating to have scientists with highly-specialized knowledge
spending large amounts of time on these more or less mundane issues. '

Research users share many of the characteristics of regulatory users, with some
significant differences listed below.

* Since they are developing and not just using the codes, they need access to
highly-productive development environments with fast compile and link times,
sophisticated debugging tools, and code revision control systems.

* They frequently connect to remote computer servers, either high-end
workstations or workstation clusters in their own group, or clusters, traditional
supercomputers, or MPP machines at a central site such as an NSF
computing center.

* They typically do much of their work on Unix workstations. They may go to a
PC to get some tasks done (i.e., report generation) but a workstation is their
“home base.”



AIR QUALITY MODELING TODAY AND THE BENEFITS OF A CMS
Currently, air quality models are used to address a variety of environmental issues.

e Permitting of new sources or modifications of existing sources, including (in
the US) new source review {NSRY}, prevention of significant deterioration
(PSD) determination, and Title V permits.

e Ozone control- estimation of the effects of alternative VOC/NO, emission
control strategies on ozone concentrations and ozone attainment
demonstration modeling.

o Acid deposition issues: estimation of the sources of acid deposition and
identification of potential remedial control strategies.

e Particulate matter: air quality, deposition, and health effect impacts; regional-
scale and local particulate matter (PM) concentration impacts at coarser
(PM,,) and finer (PM, ;) size distributions; visibility impairment.

e Toxics: impacts of toxic compounds (e.g., formaldehyde, benzene, 1-3-
butadiene, POMs, dioxin, mercury, cadmium, etc.) on health, both through
direct exposure to ambient air and through indirect sources (e.g.,
bioaccumulation of toxics in fish) and on ecosystems (e.g., deposition of
toxics into the Great Waters).

e Source Apportionment, i.e., the assessment of the fractional contribution of a
source (or a group of sources) to the air pollution concentrations measured in
a certain region.

e Emergency planning and response through estimation of the range and level
of impact of accidental releases (real or hypothetical) of toxic compounds.

e Exposure of humans to harmful air pollutants through inhalation (e.g., ozone,
PM,,, toxics) and other pathways.

e PRisk assessment of different mitigation measures including cost-benefits
analysis of alternative emission control strategies.

Currently, each of these issues is treated with different sets of modeling tools with
varying levels of scientific detail and complexity. The benefits of the CMS are multifold:
the latest scientific models will be available, resulting in decisions being made using our
most current scientific understanding; the user-friendly graphical user interface (GUI)
will greatly increase the number of potential users and their access to more
sophisticated modeling tools; policy decisions will be made using the latest science,
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decreasing the risk associated with making the wrong decision; and the costs of model
applications will be greatly reduced because of the ease of use of the CMS.

THE ATTRIBUTES OF THE CMS

The attributes of the CMS are grouped here into four parts.

b

. Global Requirements

2. Applications of the CMS

3. Components

4. Design and Development issues
These parts are discussed below.
Global Requirements
We have identified four overall attributes that we consider global requirements for the
CMS: 1) the ability to incorporate the best science and advances in science; 2) the
ability to present results to different audiences: 3) a distributed access to data; and, 4) a
consistent software infrastructure for the modules to communicate with each other.
Applications of the CMS
The CMS will support the users by providing a family of applications including: 1)
research applications; 2) reguiatory applications; 3) decision support; 4) source
apportionment; and, 5) emergency preparedness and response.
Components

We divide the components of the CMS into two sections.

* User Components
* Science Components

The user components present issues that are relevant to the different ways in which the
CMS will be used. In other words, the user components cover those aspects that are of
direct relevance to the CMS user. They are:

User interface

Visualization

Geographical information systems (GIS)
On-line CMS training

Policy and regulatory aspects
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» Data acquisition/reduction
« Support for report preparation

The science components are those which relate directly to the science of air poliution
and atmospheric modeling topics. They are listed below.

» Emission Modeling System (EMS)
« Meteorological Modeling System (MMS)
e Ajr Quality Modeling System (AQMS)
- Transport and diffusion
- Chemistry
- Aerosol
- Deposition
+ Statistical Methods
- Data analysis
- Receptor models
- Performance evaluation
» Air Pollution Effects
- Visibility
- Exposure simulation
» Numerical Methods and Optimization

The CMS will inciude modules and routines to provide functionality to all these
components. A summary of each component is presented below.

Emission Modeling System (EMS)

A key component of a CMS will be the emissions modeling system (EMS). The EMS will
characterize current and future-year emission rates, evaluate the effectiveness of
alternative emissions reduction scenarios and assumptions, track the progress of
emissions reductions, and prepare an emissions inventory that is suitable for use in an
air quality model.

In terms of CMS goals, emissions modeling should be based on the bottom-up
calculation from its inception (AP42-type modeling) to the gridded model-ready
emission inputs files. When new emission factors or activity levels become available,
they can easily be inciuded in the emissions modeling system.

When bottom-up emissions information is unavailable (e.g., for consumer products,
paints, etc.), more representative and accurate surrogate distributions, based on GIS,
should be used.

The CMS will use all the information obtained in the emissions reconciliation studies
and use it to improve emissions inventory development techniques, possibly through
the use of artificial intelligence. Both regulatory and scientific (i.e., best estimates)
inventories will be available through the CMS.
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Emissions estimation for modeling accidental releases is a completely different issue
from the development of emission inputs for 3D photochemical or acid deposition
modeling. An accurate real-time estimate of the emissions of a toxic pollutant is needed
in emergency response release modeling. These estimates will be obtained by using
techniques such as those presented by Hanna and Drivas (1987) and the US EPA
(1989).

Algorithms for the estimation of emergency releases will be available in the CMS for
quick use by the facility operators to estimate the amounts of pollutant discharges.

Meteorological Modeling System (MMS)

The meteorological modeling system (MMS) will be a key component of the CMS. The
MMS will simulate all the required meteorological variables at any scale required by the
CMS user. The MMS will include both diagnostic and prognostic modules. Diagnostic
models are based on objective analysis of available meteorological measurements in
the study region and simply provide a best estimate of steady-state meteorological
fields by appropriate data interpolation and extrapolation techniques. Prognostic models
simulate the evolution in time of the atmospheric system through the space-time
integration of conservation equations.

Air Quality Modeling System (AQMS)

Another key aspect of a CMS will be the provision of an air quality modeling system
(AQMS), which consists of four components: transport and diffusion, chemistry, aerosol,
and deposition.

Statistical Methods and Perforamance Evaluation

The CMS wiil contain a set of modules to perform statistical data analysis of all
available data, including those generated by the simulations. In addition to traditional
statistical data analysis routines, such as frequency distribution analysis and
spectraltime series analysis, the CMS will include receptor modeling modules, such as
the Chemical Mass Balance (CMB) receptor mode! (Watson et al., 1990).

The CMS will also include a set of statistical routines and a detailed protocol to evaluate
the performance of meteorological and air quality models. These performance
evaluation modules will compare model predictions with field measurements and
provide sophisticated analysis and interpretation of the differences. The comparison will
include proper consideration of measurement errors and spatial/temporal
representativeness of measurements. The performance evaluation modules are
expected to be based in part on the work by Alcamo and Bartinicki (1987), Hanna
(1988), and others, as further discussed in Section 2.1.3.2.
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As a decision support tool, a CMS must facilitate decision analysis in the face of
uncertainty. To do so, it initially must provide a mechanism for estimating the
uncertainty and variability in the inputs to its modeling components (e.g., emissions or
boundary conditions) and the uncertainty inherent in any parameters, approximations
and parameterizations used in the component formulations (e.g., the advection scheme
or the chemical reaction rate expressions). Then it must allow the overall uncertainty
(say, as a probability of a modeled outcome) in specific outputs to be estimated based
on the input and formulation uncertainties and variabilities. Although, the importance of
a capability for modeling uncertainty estimation to assessing risk in a CMS is
recognized, this particular aspect was considered beyond the scope of this study and is
not discussed in any detail.

Air Pollution Effecits

The CMS is expected to include the simulation of some adverse effects caused by air
pollutants. Particuiarly important is the treatment of atmospheric visibility issues. Two
major scenarios have been addressed by visibility modeling techniques: 1) plume
visibility, i.e., the simulation of the visual effects of a single plume; and, 2) regional
haze, i.e., the simulation of the visibility impairment caused by large air masses loaded
with fine particles. (Regional haze, depending upon atmospheric conditions, can be
layered or relatively uniform.) CMS will inciude modules for the numerical simulation of
both scenarios.

One of the major goals of many air quality studies is the assessment of the health risk
caused by chemical emissions from anthropogenic sources. This assessment requires
the mathematical modeling of a variety of processes, including population exposure to
these chemicals, their associated doses, and health effects. While, at least initially, we
do not expect the CMS to include dose-response calculations and mathematical
modeling of the chemistry of human body and health effects, exposure simulation will
be a component of CMS.

Population exposure models have been recenitly reviewed by Seigneur (1994) as part
of a series of articles on mathematical models for health risk assessment. Population
exposure comprises of two components: 1) the movement of different individuals or
groups of individuals through different micro-environments; and, 2) the exposure to
chemicals in these different micro-environments. These models can be either empirical
(i.e., based on statistical analysis of exposure data) or theoretical. Theoretical models
may assume a static or dynamic population.

Numerical Methods

Two of the core components of the CMS are the meteorological and air quality models,
which in turn can be viewed as a collection of numerical methods used to integrate their
respective descriptions of the physics and chemistry of atmospheric systems. Because
of their central importance, these numerical methods are evolving, improving both
accuracy and computational efficiency. In current air quality model systems that are
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grid-based, two of the more important routines are the advection routine solver and the
chemical integrator. In future systems, aerosol dynamics solution methods will become

mo

re standard and will be supported by the CMS.

Design and Development Issues

Design and development issues have been introduced in the CP. A comprehensive
and current discussion on these topics is presented in Chapters 2 through 5.

CMS DEVELOPMENT PLAN

The development plan for the CMS consists of two phases:

* Phase | - Framework design (current effort: June 1994-February 1996)

* Phase Il - CMS development (future effort)

In addition to the two phases above, a parallel effort (PE Task) is under development.
Under Task PE, an application prototype (Prototype #1) of the CMS is being developed.

Phase | has produced the following deliverables:

1. Concept paper. The CP was a pilot document that set the stage for the full
design of the CMS. It discusses the goals of the CMS and its future use as a
continuously evolving system. The Table of Contents of the CP is enclosed
as Appendix A.

2. Videotape'. The CMS Concept Video serves as a video “executive
summary” of the CP. It also summarizes the current state of modeling (and
its numerous frustrations and excessive costs) as well as portrays the range
of potential applications and benefit of the proposed CMS system. The
videotape is expected to be finalized in April 1996.

3. User survey.

Xvi

The CMS8 Concept Video is setting the stage for the next advancement in technical communications —
the video technical or management report. Since the results from the CMS will be so inherently visual,
in addition o the always needed text documents, the companion video (here construed as either
conventional tape and/or newer media such as CD-ROM) will graphically portray the modef's results in
ways simply not achievable with text and static illustrations. The CMS will have as an important goal
the ability to generate visuals which will readily summarize the model's calculations and illustrate them
not only to the user, but management, regulators, and ultimately, the public. Desktop video is a
technology that over the next several years will become as revolutionary as deskiop publishing. Its
impact is likely to be even greater. The CMS system has been designed to take advantage of the
impending desktop video revolution. The concept video is a foretaste of what is to come not only in
modeling but technical communications.



4. CMS framework design report (i.e., this report). This is the main result of
Phase I.

The scope of work of Phase Il is discussed in detail in the following chapters.
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EXECUTIVE SUMMARY

CAMRAQ AND THE CMS

The Consortium for Advanced Modeling of Regional Air Quality (CAMRAQ) is
sponsoring an initial effort toward the development of a Comprehensive Modeling
System (CMS) for air pollution. This framework design report was prepared as the final
product of this initial effort.

A previous concept paper report (Zannetti et al., 1995; hereafter referred to as CP) was
prepared as part of this project. The CP was a pilot document to set the stage for the
full design of the CMS. (We enclose the Table of Contents of the CP as Appendix A.)

WHAT IS A CMS?

The CMS must provide an infrastructure that helps its users to do their jobs better and
faster, whether those jobs be regulatory and policy analysis, source impact
assessment, understanding atmospheric chemistry and physics, or performing
atmospheric research studies. As such, the CMS has been designed to provide the
following:

1. A platform — for modeling pollutant emissions, atmospheric physics and
chemistry, and the impact of pollution — in as scientifically sound a fashion
as is desired or possible.

2. A readily accessible interface, so that its use is a benefit, not a distraction.

3. A powerful set of analysis and decision-support tools, be they graphical,
visual, economic, or scientific, including report preparation.

4. A method to make maximum use of the available computational resources,
including CPU power, disk storage, and communication systems.

The CMS has been designed in a way that facilitates its continuous evolution with
science, computer capabilities, and user needs. In particular, the CMS must include the
best science and be scientifically credible; facilitate control strategy planning; be readily
extensible; be easily used; take advantage of evolving computational environments; be
robust; and be able to interact with and benefit from other modeling systems, such as
EPA’s Models-3.

The CMS has been designed to be used both by regulatory users and researchers. By
regulatory users, we mean the regulated entities, the environmental consulting firms
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they employ, and the regulating agencies, both at a local and national level. By
researchers, we mean those who work to develop new modeling and analysis
techniques and apply the latest techniques to gain new scientific insights.

Currently, air quality models are used to address a variety of environmental issues,
such as emission permitting, ozone control, acid deposition, particulate matter, air
toxics, emergency planning and response, human exposure, and risk assessment.
Each of these issues is treated with different sets of modeling tools with varying levels
of scientific detail and complexity. The benefits of the CMS are multifold: the latest
scientific models will be available, resulting in decisions being made using our most
current scientific understanding; the user-friendly graphical user interface (GUI) will
greatly increase the number of potential users and their access to more sophisticated
modeling tools; policy decisions will be made using the latest science, decreasing the
risk associated with making the wrong decision; and the costs of model applications will
be greatly reduced because of the ease of use of the CMS.

CMS DEVELOPMENT PLAN

The development plan for the CMS consists of two phases:
e Phase | - Framework design (current effort: June 1994-February 1996)
e Phase Il - CMS development (future effort: 1996-1999)

In addition to the two phases above, a parallel effort (PE Task) is under development.
Under Task PE, an application prototype (Prototype #1) of the CMS is being developed.
and is expected to be completed in February 1996.

Phase | has produced the following deliverables:

1. Concept paper. The CP was a pilot document that set the stage for the full
design of the CMS. It discusses the goals of the CMS and its future use as a
continuously evolving system. The Table of Contents of the CP is enclosed
as Appendix A.

2. Videotape. The CMS Concept Video serves as a video “executive
summary” of the CP. It also summarizes the current state of modeling as
well as portrays the range of potential applications and benefit of the
proposed CMS system. The videotape is expected to be finalized in April
1996.
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3. User survey.

4. CMS framework design report (i.e., this report). This is the main result of
Phase I.

THE CMS AS A CONCEPT
The CMS concept was developed with two main objectives in mind.

1) To create a tool for a system-assisted, user-friendly use of advanced air
quality models, in order to facilitate the use of the best science in regulatory
decisions.

2) To provide a software platform for the application and the incorporation of
the most advanced air pollution models, in order to facilitate scientific
interactions, exchanges, and new developments.

THE CMS AS A SYSTEM

The fully-developed CMS will be accessible from the user's workplace through a
computer interface, either workstation- (Unix) or PC-based. The user's interface
envisioned for this purpose, includes visualization software for displaying two- and
three-dimensional representations of input and output data. It also includes
geographical information system (GIS) capabilities for accessing and displaying data
according to geographical location. Powerful statistical packages will be available for
summarizing, synthesizing, and analyzing data, as well as extensive on-line help files to
minimize (or avoid) reliance on operator's manuals. Not necessarily on-site, but
accessible through this user's interface, are utilities and facilities, e.g., for producing
video copies of animated visualizations of the data.

By pointing and clicking with a mouse, this envisioned interface will allow the user to
select a model configuration (e.g., type of emissions model, type of meteorological
model, type of air quality model) consistent with the intended application. If desired, the
user can also select individual modules (e.g., preprocessors, chemical mechanism,
boundary layer treatment, advection scheme) other than the default set. Having
configured the model, the user then can select the geographic domain and time period.
Then, the corresponding emissions, meteorology, air quality, topography, land use, and
demographic data can be selected as needed, often from a geographically distributed
archive via the Internet.

The CMS component models will be executed through the user's interface, as well as
evaluated using on-line comparative and diagnostic tools. The user can generate
tabular, graphical, and textual reports based on the data also via the interface. All of
this can be done interactively with other collaborators through the interface's digital TV/
networking capability. Of course, such a capability also will support E-mail and easy file
transfers.
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Numerical models available from the CMS fall roughly into the categories of emissions,
meteorological, dispersion, and air quality, and will be selected based on the application
and data availability. They could be applied to assessments on local, urban, regional,
or global scales of emergency response, population or ecosystem exposure, or
response of visibility, ozone, deposition, and/or particulate matter to emissions control.
In particular, special modules in the CMS will allow the system to assist during
accidental releases of air pollutants and emergency situations. These modules will
provide, among other things, real-time access to on-line meteorological data and
satellite images.

THE USER PERSPECTIVE

The CMS user sees the system through a series of interactions with the facilities
provided by what should essentially appear to be a “black box” containing all the
required functions. The primary interface will be through a set of standard graphical
user interfaces (GUI) which promote the effective use of the system by even uninitiated
users.

One user's view of the “CMS black box” is displayed in Figure 2-2. The users will focus
on the functions offered by the CMS through the GUI. The users may be aware of the
demands their work may make on system resources, but the CMS will reflect the
availability and cost of those resources to the user in the course of CMS usage.

SCENARIOS

The following scenarios describe the cases which have been identified as design points
for the CMS.

baseline simulation

sensitivity/uncertainty

new science

control strategy

permitting

exposure/risk assessment/cost-benefit analysis
emergency preparedness and response

These seven scenarios show examples of how the CMS will be used. There are, of
course, other applications in which air quality, emissions, and meteorological models
are currently used. The CMS could also take on those duties. Also, we fully expect
that more uses will be identified. For one, long-term evolution of the CMS is expected
to be towards multimedia pollution impacts, i.e., the simulation of transport and fate of
poliutants in air, water, soil, groundwater, and biota.

THE USER INTERFACE
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The CMS user interface must provide human interaction to persons with varied levels of
expertise in their own fields while possessing, in some cases, small literacy in the
vernacular of the computer industry. One of the principle requirements discussed
previously is the concept of “transparency” wherein the user deals with the CMS in
exactly the same way regardiess of the location and type of databases and computer
systems being employed at the time. An important system requirement is that the user
interface, as all other components of the CMS, be “platform neutral” or “platform
independent”.

There are several readily available software systems which support the creation and
operation of a GUI to provide the user interaction. Specifications for this system
component may be found in Section 3.5.1.1 of this document. The user will see an
identical interface on every terminal that they will use to access the system, whether it
is @ PC running Windows 95, Windows NT, Mac OS, or OS/2, or whether it is a Unix
workstation running a manufacturer's own implementation of Motif.

This “GUI" will present choices, accept and interpret user inputs, draw the operator
through a series of steps to initialize, execute models, and supporting software, store
and retrieve data, and analyze and publish the results. Figure 2-4 contains an example
of a sequence of screen displays which are the consequences of a user starting up the
CMS, selecting the photochemical modeling component, and choosing the Los Angeles
basin and its database as the object of this particular run.

CMS SYSTEM SERVICES

The CMS System Services contain the real heart of the CMS. The system services
operate directly on the data. In this regard, the internal design of the CMS could be
termed “data centered”. The data in this case contains not only the obvious cases of
model input and output data, but the programs themselves, and auxiliary data such as
GIS and other graphical mapping information. Thus, an important component of the
CMS will be a comprehensive database management system which is capable of
dealing with a variety of data formats, providing conversions where necessary.

The database system characteristics are specified in detail in Section 5.3, but it is
important to highlight here that this system must be able to provide internal security and
integrity checks, even when the databases or portions thereof, are geographically
scattered and accessible only through relatively unsecured network connections. Since
one of our principal goals is for the CMS to be “platform independent” it is essential that
this program adopt a standard database system which is demonstrably “platform
neutral”.
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MANAGEMENT OF PROCESSES AND COMMUNICATIONS

If the CMS was only to exist on a single computing system and be accessed by a single
user at a time it would be possible to implement most of the system as a collection of
programs and subroutines. The previous discussions make clear that a far more robust
system is required. Hence, the CMS is divided up into entities which contain one or
more programs. Many of these entities are semi-autonomous and may be executed on
one or more computer systems. They can communicate with other entities and perhaps
even invoke services on other computing nodes.

The relationship between a multiplicity of asynchronous processes can create chaos in
even moderately complex systems. To avoid this chaos, a set of formalisms have been
developed over time to describe and bound the creation, operation, and interaction of
such entities. Fortunately, the CMS is far from unique in many of its requirements.
Systems as varied as on-line airline reservations to banking systems share many of the
same needs. In response to this, a significant effort in this area has resulted in the
Open Software Specification of the Distributed Computing Environment (DCE) which is
now provided by every vendor of computing hardware and operating systems, including
Unix systems as well as the PC-based Windows 95, Windows NT, Mac OS, and OS/2.
Thus, the underlying “backplane” of the CMS infrastructure is the DCE, providing a
platform-independent system and schema for managing the entire CMS.

FILE SYSTEMS, SECURITY, AND INTEGRITY

Underlying the database management system will aiso be a standard mechanism for
securing the integrity and access to the data files within the CMS. The DCE provides a
basic distributed file system (DFS), which can be augmented with Kerebros security
mechanisms. Again, these systems are available on all computing platforms and have
become industry standards, so that “platform neutrality” of all of the base components
of the CMS is assured.

IMPLEMENTATION PLAN

In our implementation plan, the CMS will be developed as a series of increasingly
comprehensive prototypes.

The premise for our implementation approach is that it is not practical, and arguably not
possible, to specify ahead of time every implementation detail and anticipate the
consequences of every interaction between system components for a system such as
the CMS. By developing the CMS as a series of increasingly comprehensive prototypes
that are tested by actual users, we can adapt the system as we go, that is, evolve the
system. This is distinctly different than the concept of “learning” prototypes. A learning
prototype is considered a throw-away, designed to help understand some aspect of the
problem, to fill in some missing pieces in what is still a top-down design process. Our
prototypes are intended to be on the main evolutionary branch to the full CMS. In the
case of the CMS, we start with a good understanding of the users’ functional

XXiv



requirements for the system. From this we can develop a rough “system design” based
on the team’s experience in other software development projects. This reflects the state
of our knowledge at the beginning of the CMS development process. By adopting an
adaptive approach, we can make adjustments as we go, based both on our increasing
knowledge and on changing external factors, such as new hardware and software
products or revised user requirements.

Based on the experiences of the CMS design team members, there are at least five
major factors that go into deciding the design goals of a particular prototype version:

—r

_ Prioritization of the needs of the user/funder community
2. Availability of existing components,

3. The degree to which a particular aspect of the system is fundamental (i.e., it
needs to be in place in order to integrate other subsystems/components)

4. Lessons leamed (and fixes required) from the previous prototype
5. Level of funding available

Each version must present new air quality modeling functionality to the user. That is to
say, that a new version should not only provide upgrades to the underlying foundation
of the system, but also allow them to perform additional tasks. Thus, for each new
prototype there is a delicate balance between new user-oriented features, structural
improvements, new platforms, and new documentation; all on a limited budget. This
should sound familiar to anyone who has ever been associated with developing
commercial software. That is probably another good way of thinking about our
implementation strategy: the CMS must compete every step of the way with other
governmental and commercial development efforts. Hopefully, in many cases, the most
competitive strategy will be to find ways to cooperate. The fact that the CMS must
remain competitive is a healthy dose of reality for the implementers. Without this kind of
“real world” stress, projects like the CMS risk turning into exercises not grounded in
reality.

PROTOTYPE #1

Prototype #1 is expected to be completed in April 1996. It was developed to assist, as a
parallel effort (“fast prototyping”), in the design of the CMS framework, to provide a tool
for presentation/demonstration/marketing, and, most importantly, to perform actual
simulation studies and be used by CAMRAQ members and other parties for practical air
quality evaluations.
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The prototype possesses five major characteristics:

—

. Its primary focus is on the issue of tropospheric ozone.

2. It fuffills some of the needs not currently satisfied by available systems and
prototypes.

3. ltis portable and able to be instalied on different platforms.
4. ltis easy to run through a user-friendly interface.
5. It contains advanced 3D visualization features.

The primary challenge in defining the first prototype version was to put together a
system on a very limited budget that displayed some of the most important aspects of a
CMS. At its most basic, a CMS must provide users with the capability to setup and run
an AQM with an easy to use GUI, and to interactively analyze model outputs versus
observations. The model of most immediate significance to the CAMRAQ group was
the UAM-IV photochemical model as it is being widely used in the production of state
SIPs for the minimization, and eventual elimination of ozone episodes. It is also being
used in Canada and Europe. As it was not possible within this phase to develop a full
GUI to all aspects of UAM-IV setup, it was decided to provide a limited (but still useful)
capability for altering the emissions inputs into the UAM-IV. UAM-IV was chosen as the
first model because of its wide usage. Other photochemical models can be added with
relatively minor adjustments.

PROTOTYPE #2

In Version 2.0 of the CMS prototype we would build onto the Version 1.0 base by
incorporating more of the infrastructure described in the System Design (Chapters 2, 4,
and 5) portion of this document, and expand the modeling-oriented functionality. This
was anticipated in the design of Prototype #1, as the interface has facilities for the
expansion into other models and model types. The actual screens developed for
Prototype #1 would be retained, for the most part, but the underlying code would be
“serverized”, that is, broken into client and server processes that send requests and
services through an interprocess communications mechanism. This is essential to allow
the application to be distributed across multiple machines, allowing PC-based CMS
users to access functionality that currently has only been implemented on workstation
or “supercomputer” machines.

Prototype #2 would include a full emission model, 2 diagnostic meteorological models,
2 photochemical air quality models, and a Monte-Carlo Lagrangian particle model.
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PROTOTYPE #3

In Prototype #3 we would add the Model Servers and the CORBA system'. The major
change is that the CMS would have knowledge of the model and could present the user
with a GUI for model setup. (see Section 5.5) This is a very big step in the direction of
making it easier to create model runs. There would be a registry function whereby new
or legacy codes could be registered into the CMS system. This process includes the
creation of a GUI template that the CMS would use to define the model setup interface,
as well as a catalog of data and computational resource requirements. In addition, links
wouldl be established between the CMS DBMS and a GIS system with access to
geographically registered information and GIS analysis capabilities.

Additional models (e.g., a prognostic meteorological model, such as RAMS, and a non-
UAM-based photochemical model, such as SAQM) would be added to Prototype #3.

CMS PRODUCTS

After the development of Prototype #3, we expect real CMS “products” to be provided.
These products wouldl follow the specific design structure presented in Chapters 2, 4, &
5. We anticipate the development of a “basic” CMS product, to be followed by an
“intermediate” CMS and a ‘ful’ CMS.

Object management mechanisms are a software construct used to make it easier for external
programs to interact with a set of procedures and data. This is done by proving some degree of
encapsulation (see Appendix B). A common example is the OLE System from Microsoft. This is a
rudimentary object management mechanism used to exchange data between Microsoft Windows
Programs via the clipboard. It provides a means of packing the data along with a description of the
data and how they should be read. This allows a user to ingest a set of database data into a
spreadsheet, for example. A more sophisticated example might be the use of the SOM Object
Management System in OS/2 to allow the user to “drop and drag” a document icon onto a printer or
fax icon. Here the objects contain both the data and the routines (or methods in object-oriented lingo)
used to access the data. The common object resource broker architecture (CORBA) is a more
sophisticated object management mechanism developed by the Open Management Group. It is
intended to be a platform-independent system. As its name implies, the CORBA provides a repository
and a brokerage “service” for all the objects under its control. This “service” ranges from ensuring
proper associations between objects which are activated by user requests, as well as managing the
necessary interlocks and registries necessary for system coherence. For example, an object may be a
temporal database which needs updating by one process while yet another process needs to access
the same object. The CORBA might block either requester until the other one is complete or it might
initiate a copy of the object so that both requests can be satisfied at the same time. It is our plan to
utilize CORBA in the development of the CMS. We must be aware, however, that industry agreed
upon standards often get swept away by competing commercial entities; especially if the competition
is Microsoft. In this case the competition is between CORBA and a newer, more robust version of OLE
being promoted by Microsoft. The CMS development team will need to remain flexible on this issue
and see how things play out.

XXVii



MANAGEMENT PLAN

The development team would work with a clear management structure and precise
allocation of responsibilities. The development effort would be performed by a
consulting team of scientists, led by a Project Manager/Principal Investigator (PM/PI)
having the overall technical and budgetarial responsibility for the project and reporting
directly to CAMRAQ Project Manager. The PM/PI would provide general guidance and
supervision and be in charge of resolving conflicts, when required.

Several subcontractors would work on the project (see Figure 6-1). Each subcontractor
group would be led by a Group Leader (GL) reporting to the PM/PI. The GL would be
responsible for the technical performance of the group and the financial issues
associated with the subcontract.

Each project effort would be subdivided into tasks. Each task would be performed by a
“leading” team of scientists, from one or more groups, and monitored by a “monitoring”
team (see below). The leading team for each task would be managed by a Task Leader
(TL) reporting directly to the PM/PI. The TL would be responsible for the technical
performance of the task team and the financial issues associated with the task effort.

The development team would adopt the matrix management approach. Each scientist
working on the project would report to two managers, the GL (who would not change)
and the TL (who would change depending upon the specific task in which the scientist
is involved).

The CMS development team would operate with a certain degree of “planned
redundancy” and with the use of “task monitoring” teams (see Figure 6-2). Planned
redundancy means that two teams would be selected for each task. The first team
would be the “leading” team, in charge of performing the actual work. The second team
would be the “monitoring” team, but as capable as the leading team of performing the
task. The monitoring team would be led by a Task Monitor (TM) who would report
directly to the PM/PL. In each task, the monitoring team would dedicate a level of effort
of 5-10% in proportion to the development effort of the leading team actually doing the
work. This monitoring effort would assure that the leading team is operating in a cost-
effective manner, providing results on time and on budget and in agreement with other
parallel efforts. If necessary, the monitoring team would be able to provide extra
support to the leading team and, in extreme cases, take full control of the task effort.

In addition to the management structure discussed above (PM/PI, TLs, and TMs), the
project team would include four “oversight” leaders with the following specific functions
(see Figures 6-1 and 6-2).

e Regulatory Oversight Leader (ROL), reporting to the PM/PI with the general
responsibility of monitoring the regulatory aspects and implications of the
CMS. The ROL would make sure that the regulatory community would be
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well informed about the CMS and find it useful and applicable to their
specific needs.

« Technical Oversight Leader (TOL), reporting to the PM/PI, with the general
responsibility of monitoring the technical aspects of the CMS. The TOL
would make sure that the CMS remains anchored to the best available
science and its technical objectives are properly fulfilled.

e Contract/Subcontract Management Leader (CML), reporting to the PM/PI,
with the general responsibility of assuring correct and smooth management
of contracts and subcontracts. The CML would also make the effort of
minimizing contractual paperwork and allow scientists to concentrate their
efforts on technical issues instead of administrative details. The CML would
establish simple but effective procedures for contract/subcontract manage-
ment and progress monitoring.

e Public Relations Leader (PRL), reporting to the PM/PI, with the general
responsibility of assuring continuous and effective public relation efforts and
external exposure.

All communications among team members would be electronic. There would be a
“preferred” communication system (the Internet), an “alternative” communication system
(e.g., America On-Line), and an “emergency” communication system (phone, pager,
fax). Written communications would be kept at a minimum. The development team
would use the most modern methods and software for project and time management.
Software productivity tools would consist mostly of Microsoft products.

CAMRAQ MANAGEMENT STRUCTURE

CAMRAQ's management structure has evolved as the organization has grown and is
expected to undergo further changes as maturity is approached. At present, CAMRAQ
is directed by an executive committee composed of those CAMRAQ members who are
contributing financially to the CMS design project. Important functions of the executive
committee are to set policy for the consortium, set rules and criteria for CAMRAQ
membership, approve access fee structures, and approve new members. Currently,
CAMBAQ also includes an associate membership class, which is composed of
interested individuals and organizations that do not contribute financially to CAMRAQ
operations. While voting privileges and electronic access to CAMRAQ resources are
currently restricted to executive members, associate members are encouraged to
participate actively in all CAMRAQ meetings.

A new membership class, a “subscriber membership,” is anticipated in the near future,
to accommodate those organizations who desire CMS access but cannot contribute
financially to CAMRAQ developmental activities. ~ Under this anticipated plan,
subscriber members will pay a smaller log-in and maintenance fee for CMS access and

XX1X



will compose a subset of the associate membership. This anticipated plan also involves
formation of a general committee, comprised of members and associate members.
This committee will be the primary conduit for communicating to the executive
committee community feedback on CMS attributes and capabilities, both existing and
desired. It also will formulate, for approval by the executive committee, criteria and
rules for CAMRAQ membership, for screening, accepting, and placing visiting
scientists, and the schedule of fees for access to CAMRAQ products.

At present, the CAMRAQ coordinator is on contract with EPRI and works closely with
the EPRI project manager in the planning and implementation of CAMRAQ initiatives.
The coordinator serves as the point of contact for information on CAMRAQ.

CMS DEVELOPMENT EFFORTS

We call Phase Il the development phase of the CMS (Phase | was the design). |If
adequate funding was available Phase |l would consist of the following major efforts:

* Effort #1: Development of Prototype #1 (ongoing; completion expected in
April 1996) (this effort was previously identified as a parallel effort [PE] but
is actually the first step of Phase 1)

* Effort #2: Development of Prototype #2 (Apr-Aug 1996)

* Effort #3: Development of Prototype #3 (Sep 1996 - Jan 1997)

» Effort #4: Development of a “basic” CMS (Jan-Dec 1997)

* Effort #5: Development of an “intermediate” CMS (Jan-Dec 1998)
* Effort #6: Development of a “full” CMS (Jan-Dec 1999)

* Effort #7: Periodic maintenance and upgrade (continuous effort from 2000
on)

SCHEDULE AND COST

The expected cost of each effort is presented below.

Effort Cost Period of Performance Cumulative Cost

(1995 $) (1995 $)
Effort #1 $100K (completion expected in Apr 96) $100K
Effort #2  $350K (Apr-Aug 1996) $450K
Effort #3  $450K (Sep 1996-Jan 1997) $900K
Effort #4 $950K (Jan-Dec 1997) $1850K
Effort #5 $900K (Jan-Dec 1998) $2750K
Effort #6  $850K (Jan-Dec 1999) $3600K
Effort #7 $200K (yearly, from 2000 on)

XXX



In comparison with the costs experienced by previous major model development efforts,
the cost estimates presented above may appear quite “optimistic’.  We believe,
however, that these estimates are realistic if the development effort is to be conducted
by -experienced and dedicated scientists and managed in a firm and cost-effective

fashion.
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GLOSSARY

(this section includes the words and expressions listed in the CP)

Applications Program Interface (API)

System block diagrams containing one or more boxes labeled “APJ” abound in every
monthly magazine devoted to computer-based products and systems. What is an API?
It is just what its name describes, an interface for an applications program.

We have had applications program interfaces on our systems since almost the
beginning of computer software. A developer writes a program to perform a task. In a
special instance, that program might be hardwired into a computer with a single
purpose and which begins execution, as soon as the hardware power is turned on.
Normally, however, such a program is invoked by entering a command at a computer

terminal.

One could say that even the simplest program execution from a command-line entry
has an “interface”, its name as it appears on that command line. Of course, most
programs require a set of parameters to be provided at the moment they are invoked.
So the command-line entry gets a bit more complicated. For example, FOO PARAM1,
PARAM2, PARAM3 where our application program is named FOO. Somehow these
parameters must be provided to the executing FOO program. Some part of the
operating system, which is lurking at the terminal waiting for the typing of the command
line, has to acquire the parameters PARAM1, etc., and place those text strings where
the FOO program can read them. Thus, even the most basic operating system function
provides an “application program interface”.

Viewed in this light then, the more sophisticated technique of providing an interchange
between a user and a program, from simple question and answer sessions, using
typed-in entries to the terminal or the most beautiful graphical display with menus,
buttons, dials, and sliders, are all APlIs.

What if the program is not initiated from a command line terminal entry? Some other
program in the system will perform a function similar to the command line, string up
FOO and ensuring that it gets the PARAMN, parameters delivered to it. This too is an

API.

In the CMS, the APl becomes more than the simple exercise we have discussed here.
As programs such as the “legacy” codes are integrated into the CMS, some form of API
will be provided to bridge the gap between the environment and parameters which the
program expects and the environment developed for the CMS.
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Backplane

In the electronics industry a “backplane” provides the interconnection of all active
electronic components. This used to be a mat of wires and is now commonly a printed
circuit board, line the “motherboard” in a PC.

Component

Any part of the CMS that is intended to fulfill a specific function, e.g., the visualization
component, or the emissions component. The CMS will consist of a set of components
and the connections between these components. It will be possible to make use of
several different modules to fuffill the functionality of a certain component.

Comprehensive Modeling System

The system to be developed as a result of this framework design. The Comprehensive
Modeling System (CMS) will be used to refer to the specific system that is the focus of
this concept paper. The term modeling system will be used to refer to the class of
similar systems in development elsewhere or to the generic concept of such a system.

Framework Design

In the context of this report, Framework Design indicates a set of development
guidelines for CMS, and not an extremely detailed specification procedure for CMS
coding, interfaces, and windows specifications.

High End PC

By high end PCs, we refer to the new types of PCs based on chips like the PowerPC or
Pentium processor, and running the newer operating systems like Microsoft
Windows/NT, IBM OS/2, and Apple OS.

Instantiation

“Instantiation” is the creation, or starting up, of a new copy (or instance) of a program,
object, or process in a computing system.

Model

Embodies a quantitative description of the functioning of the real world (usually in some
form of computer code, at least in a set of equations). A model simulates some part of
the physical world and can be used to explore hypotheses about the effects of various
changes on the physical world without experimenting directly in the physical world.

Module
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A specific component of the CMS. For example, the visualization package AVS could
be a module used to provide the functionality of the visualization component.

Processes

The terms “process instance”’, “inter-process communications” & “process manage-
ment” are found in any modemn computer system, no matter how primitive its operating
system may be. A “process” is an executing program which is started by the operating
system. In some cases, several copies of this program are running at one time. Each
executing copy is an “instance” of that program and the procedure for a program startup
may be called its “instantiation”.

Processes on platforms from PC to CRAY possess certain characteristics:

a. A process owns its memory and is protected from incursions by other
processes by the combination of hardware and operating system software.

b. A process has several states it can be in: starting up, terminating, running,
or waiting for service.

c. Processes can exchange information with other processes on the same host
computer through a feature called “shared memory”. Wherein a portion of
both processes’ memory address space is created as a shared memory
segment.

d. Processes can exchange data with other processes executing on the same
host or on a separate computer system through some form of message
passing between the two processes.

The operating system provides primary management of processes running on their
hosts, and in addition, provides tools for other processes to participate in the
management of processes. Simple examples are one process starting or terminating
another.

Note that, in the main, processes are quite independent from each other and are
protected from each other. They can run without synchronizing with other processes, if
desired. “Processes” are the basic building blocks of distributed computing systems.
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Public Domain Software

We define public domain software as all freeware software (i.e., software that does not
require a license and that anyone can legally download from other machines) plus all
those environmental models and codes that are normally distributed free of charge or at
a nominal fee.

Resolution

The smallest scale physical feature that can be properly represented in a particular
mode! usage. |t is related but not equivalent to the model mesh size. For a
meteorological model for example, the effective resolution is at least four times coarser
than the mesh size (Ax). A model running with a 10 km Ax only begins to effectively
resolve atmospheric features with a horizontal scale on the order of 40 km or larger.

Security

A fundamental property of the CMS, which will make it possible for users to utilize all
the resources of the system regardless of their geographical location, is the assurance
of security for the programs and data for each user. The distributed computing
environment (DCE) provides an extensive security system for user access 10 servers,
as well as user access and controlled sharing of the CMS filesets. This security
scheme is based on a MIT development named “Kerebros 5” (K5) and represents a
widely accepted technology for computer systems. The fitle “Kerebros” is taken from
Greek mythology and the name for a two-headed, very “aggressive” dog who protects
its master from all enemies. In the MIT system, a “master” computer is responsible for
all security actions and must be physically secured from all but the most trusted human
access. MIT describes the ideal for this physical isolation as “locking the master
computer in a closet, which is guarded by a very irritable dog ... Kerebros”.

In such a system, once the master computer's physical integrity is assured, a software
system can be put in place which will assure comprehensive security of all of the
system which it manages, no matter where the other members are located.

The DCE reliance on K5 introduces some complications in normal operating systems.
No longer is the user’s log-in name and password managed by the CMS client host.
Instead, the host carries on a dialogue with the security “master” computer, exchanging
over the network only encrypted information such as passwords. This encryption is of a
“one-time” form so that even the most ambitious “hackers” cannot obtain this vital data.

Although K5 is a core element in DCE security, Kerebros-based security systems will
be used on most new computer applications where security is a concemn.
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Subsystem

Used interchangeably with the term component.

Threads

A thread is an executing program which has most of the properties of “processes”
described above. The major difference between a thread and a process is that a group
of threads within a process share direct access to the same identical memory locations.
This makes it possible to implement very efficient communications between different
executing programs but without the protection afforded by the completely independent
memory spaces which a simple process possesses. Systems which provide thread
execution capability must also provide a number of functions for managing the
relationship between threads and resolve conflicts in access to common memory areas.
“Threads” have become such a powerful and necessary component of modermn
computing that a POSIX standard has been established (called “pthreads”) for which all
operating system vendors are now developing software support.
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ABBREVIATIONS

(this section includes the abbreviations listed in the CP)

3D
4DDA
AGWMA
ACL
ADE
ADOM
API

API
AQM
AQMP
AQMS
ARPS
AUSPEX
AVACTA I

BIOEM
CAMRAQ
CAPS
CB-Iv
CBM-1
CIT
CMB
CMS
CMSA
CMU
CO
CORBA
COST
CP
CPU
DBMS
DCE
DFS
DICCE

DOE
DWM

Three-dimensional

Four-dimensional data-assimilation

Air and Waste Management Association

Access control list

Atmospheric Diffusion Equation

Acid deposition and oxidant model

Application programmer interface

American Petroleum Institute

Air quality model

Air Quality Management Plan

Air Quality Modeling System

Advanced Regional Prediction System

Atmospheric Utilities Signatures: Predictions and Experiments

AeroVironment Air Pollution Mode! for Complex Terrain
Applications

Biogenics Emissions Estimates Model

Consortium for Advanced Modeling of Regional Air Quality

Center for Analysis and Prediction of Storms

Version |V of the Carbon Bond Mechanism

Carbon Bond Method or Model

Carnegie &-California Institute of Technology

Chemical mass balance

Comprehensive Modeling System

Comprehensive Modeling System Application

Carnegie Mellon University

Carbon monoxide

Common object resource broker architecture

Crude Oil Storage Tank Emissions Estimates Model

Concept Paper (see Zannetti et al., 1995)

Central processing unit

DataBase Management Server

Distributed computing environment

Distributed file system

Distributed informatics, computing, & collaborative
environment

Department of Energy

Diagnostic Wind Model
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EMFAC

EMS
EPA
EPRI
EPS
ERDAS
ESnet
EWB
FaAA
FREDS
GB/s
GEMAP
GEMS
GIS
GUI
HPCC
HPF
HYPACT
IC/BC
IEEE
11O
ISC
JEWEL
KSC
LADCo
LAN
LLNL
LMOS
LP
LPDM
LULC
MILP
MINLP
MM5
MMS
MOBILE

MoVEM
MPP
NAPCA
NCAR
NCDC
NLP
NSR

California Air Resources Board’s Fortran model for computing
mobile source emissions factors

Emissions Modeling System

Environmental Protection Agency

Electric Power Research Institute

Emissions Processing System

Emergency Response Dose Assessment System

Energy Sciences Network

Environmental Work Bench

Failure Analysis Associates, Inc.

Flexible Regional Data System

Gigabytes per second

Geocoded Emissions Modeling and Projection

Geographic Environmental Modeling System

Geographic Information System

Graphical user interfaces

High-performance Computing and Communications

High-performance Fortran

Hybrid Particle and Concentration Model

Initial concentrations and boundary condition

Institute of Electrical and Electronic Engineers, Inc.

Input/output

Industrial Source Complex

Joint Environmental Workspace and Emission Laboratory

Kennedy Space Center

Lake Michigan Air Directors Consortium

Local area network

Lawrence Livermore National Laboratory

Lake Michigan Ozone Study

Linear programming

Lagrangian Particle Dispersion Modeling

Land use/land cover

Mixed integer linear programming

Mixed integer nonlinear programming

NCAR/Penn State Mesoscale Meteorological Model, Version 5

Meteorological Modeling System

EPA’s Fortran Model for computing mobile source emissions
factors

Motor Vehicle Emissions Estimates Model

Massively parallel processor .

National Air Pollution Control Administration

National Center for Atmospheric Research

National Climatic Data Center

Nonlinear programming

Nitrogen oxides

New source review



NQS
OLE
OMG
00D
OSF
PAR
PBL

PC

PE

PM

PSD
PVM
RADM
RAMS
RAPS
RMP
ROM
RPC
RPM

SAl
SAIC
SAQM
SARMAP
SCAB
SCAQMD
SGl
SHASTA
SIP
SJVAQS
SMP
SMS
SSESCO
UAM
UAM-IV
UAM-V
UPS
URM
USGS
UTM
VMT
VOC

Network Queuing System
Olefinic bond

Object Management Group

Object-oriented design

Open Software Foundation

Paraffinic bond

Planetary boundary layer

Personal computer

Parallel effort

Particulate matter

Prevention of significant deterioration

Parallel Virtual Machine

Regional Acid Deposition Model

Regional Atmospheric Modeling System
EPA’s Regional Air Poliution Study

Risk management plan

EPA’s Regional Oxidant Model

Remote procedure call

Reactive Plume Model

Systems Applications International

Science Applications International Corporation
SARMAP Air Quality Model
SJVAQS/AUSPEX Regional Model Adaptation Project
California South Coast Air Basin

California South Coast Air Quality Management District
Silicon Graphics Inc.

Sharp and Smooth Transport Algorithm

State Implementation Plan

San Joaquin Valley Air Quality Study
Symmetric Multi-Processing ’
SARMAP Modeling System

Supercomputer Systems Engineering and Services Company
Urban Airshed Model

Standard version of the EPA’s Urban Airshed Model
Version V of the Urban Airshed Model

UAM Postprocessing System
Urban-to-Regional Multiscale Model

US Geological Survey

Universal Transverse Mercator

Vehicle miles traveled

Volatile organic compound
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1

INTRODUCTION AND OVERVIEW

We use numerical models of the atmosphere for a variety of purposes for which we
have few or no reliable alternatives: forecasting the weather, studying the interaction of
meteorology and chemistry, predicting how air quality will respond to emissions
changes, or how downwind exposures are related the emissions.

However, useful atmospheric modeling, especially when nonlinear chemical reactions
are included, is fraught with difficulties and challenges. As we strive to increase the
realism of the simulations by including more detailed representations of atmospheric
processes at finer spatial resolution, the computations get more complex and time
consuming. Their sheer complexity makes them prone to coding and conceptual
errors. To deal with the computational demands, the most complex air quality models
are typically run on supercomputers. For photochemical simulation, for example, there
are only a few relatively complex air quality models in use today, yet their dissimilarities
are probably greater than their similarities. They often use different advection
schemes, coordinate systems, diffusion parameterizations, chemical mechanisms,
numerical solvers, and (if they are included) radiation transfer schemes, and cloud and
aerosol process representations. Generally they are not particularly well documented,
not easy to modify, and not rigorously evaluated, to the extent that we know their
relative performance, how well they are doing, and for what reasons. It is rarely easy to
incorporate modeling code developed elsewhere into one's own model, hindering the
transfer of modeling technology within the community. The job of preparing their input
data is enormous. The tedium and intensity of this exercise presents the opportunity
for introducing inadvertent errors. Finally, comprehensive air quality simulations today
require the sequential application of different models (at least a meteorological model
and an air quality model). So far, general interfaces have not been developed and,
consequently, the use of model outputs as model inputs is difficult and time
consuming.

With the overall goal of addressing these and other modeling problems, the Consortium
for Advanced Modeling of Regional Air Quality (CAMRAQ) was formed to jointly
develop a Comprehensive Modeling System (CMS) for research and for conducting air

" Although many organizations have participated in the formation and definition of CAMRAQ over the
years, only a subset is presently supporting the CMS framework design effort: EPRI, US Department
of Energy, Environment Canada, Ontario Ministry of the Environment & Energy, American Petroleum
Institute, Pacific Gas & Electric, Southern California Edison, and the US EPA. Representatives from
these organizations have the opportunity to ensure that the design addresses their particular needs.
EPRI serves as the contracting agency for all members of the group except EPA, who contracts
separately.
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Introduction and Overview

quality assessments. Under sponsorship of a subgroup of CAMRAQ members, a CMS
design team was formed. The design team has prepared this document which provides
the Framework Design for the CMS. In the near future, a CMS development team will
be formed. This team will use the concepts and guidelines presented in this document
to develop the CMS.

1.1  The CMS as a Concept
The CMS concept was developed with two main objectives in mind.

1) To create a tool for a system-assisted, user-friendly use of advanced air
quality models, in order to facilitate the use of the best science in regulatory
decisions.

2) To provide a software platform for the application and the incorporation of the
most advanced air pollution models, in order to facilitate scientific
interactions, exchanges, and new developments.

The first objective clearly aims at improving the current situation in which the most
advanced models are excluded from most regulatory applications. This situation is
clearly caused by the actual difficulties in understanding advanced models, collecting
and preparing the required input data, and interpreting the model outputs. The CMS will
make these steps easy for virtually any user and, consequently, will allow the
incorporation of the best science in all future regulatory assessments.

The second objective aims at creating a common computer platform and a link among
atmospheric scientists and modelers worldwide (and, ultimately, among environmental
scientists and modelers, if the CMS is extended to cover all environmental media and
not just the atmosphere). This link will be created by providing the atmospheric
sciences community with a useful and productive computer platform — the CMS - for
scientific research and development. We expect a positive reaction from the scientific
community and an extensive use of this “third-generation” air quality modeling system.
We expect the scientific community to recognize that, by using the CMS, or some of its
utility modules, scientists will be able to strongly improve their productivity. Once the
CMS is well established, we also expect a large fraction of the new air quality models to
be developed in a CMS-compatible fashion.

Our CMS framework design intentionally aims at satisfying the needs of two
communities: the regulatory community and the scientific community. We believe that
there is a great advantage in designing a system that is capable of helping both
communities, since regulatory applications do need the use of the best available
science and scientists need to be aware of the main regulatory concerns which drive a
large fraction of the model development activities, especially in North America.

In designing the CMS, we have taken into account users’ needs: both those explicitly
mentioned in the user survey, that we conducted at the beginning of this project, and
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those needs that are dictated by our experience and expectations. It is common for
software users to discover, once a product is available, needs that they were not aware
they had. We believe that this situation also applies, in part, to air pollution modeling
users. The software and hardware capabilities that are emerging from the new
computer revolution are indeed impressive and we expect the CMS to make these tools
available to virtually any user, even those with limited knowledge of atmospheric
processes.

We view the CMS development as an effort in which we have a clear ultimate goal —
the final CMS system. However, we achieve this goal through the development of a
series of intermediate prototypes. All prototypes have two components: a
“demonstration” component and an “application” component. The demonstration
component aims at showing the users the comprehensiveness and user-friendliness of
the entire design, even those parts that are not fully implemented. The application
component aims at providing the users with tools of immediate usefulness and
applicability to current problems and needs. In the early prototypes, the demonstration
component may have a large role which will fade away, however, in later prototypes.
Also, in earlier prototypes, the application component may not be implemented in a
fully-consistent, uniform, and elegant fashion, but is expected to provide useful tools of

immediate applicability.

The CMS will be an evolutionary system. Particular attention will be paid to the
mechanisms which the framework provides for rapid adaptation to changes in user
requirements and methodologies, as well as to transitions in regulatory mandates and
the explosive growth in computational technologies. At a minimum, the CMS will
provide a readily accessible entry to using models employed in addressing urban and
regional air quality management issues. As a system, it will facilitate the interoperability
of its major scientific components, e.g., emissions processing, meteorological modeling,
air quality modeling, and decision support. In addition, the CMS will provide a readily
accessible repository for the related data. Finally, it will provide an extensible set of
analysis tools to match the user’s skills, needs, and operating environment. Adherence
to standards for software development, communications, security, and inter-processor
operations will be fundamental to each aspect of the CMS design. An aggressive
stance on adoption and use of these standards is necessary to maximize the
platform/system independence of the CMS and to take advantage of as wide a range of
computational hardware and software as possible.
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1.2 The CMS as a System

It should be emphasized that the description that follows is for the fully-developed CMS
that is envisioned by the design team. The rate at which the CMS evolves into this form
will depend on the level of support and funding priorities.

This fully-developed CMS will be accessible from the user's workplace through a
computer interface, either workstation- (Unix) or PC-based. The user's interface
envisioned for this purpose, includes visualization software for displaying two- and
three-dimensional representations of input and output data. It also includes
geographical information system (GIS) capabilities for accessing and displaying data
according to geographical location. Powerful statistical packages will be available for
summarizing, synthesizing, and analyzing data, as well as extensive on-line help files to
minimize (or avoid) reliance on operator's manuals. Not necessarily on-site, but
accessible through this user's interface, are utilities and facilities, e.g., for producing
video copies of animated visualizations of the data.

By pointing and clicking with a mouse, this envisioned interface will allow the user to
select a mode! configuration (e.g., type of emissions model, type of meteorological
model, type of air quality model) consistent with the intended application. [f desired, the
user can also select individual modules (e.g., preprocessors, chemical mechanism,
boundary layer treatment, advection scheme) other than the default set. Having
configured the model, the user then can select the geographic domain and time period.
Then, the corresponding emissions, meteorology, air quality, topography, land use, and
demographic data can be selected as needed, often from a geographically distributed
archive via the Internet.

The CMS component models will be executed through the user's interface, as well as
evaluated using on-line comparative and diagnostic tools. The user can generate
tabular, graphical, and textual reports based on the data also via the interface. All of
this can be done interactively with other collaborators through the interface's digital TV/
networking capability. Of course, such a capability also will support E-mail and easy file
transfers.

Numerical models available from the CMS fall roughly into the categories of emissions,
meteorological, dispersion, and air quality, and will be selected based on the application
and data availability. They could be applied to assessments on local, urban, regional,
or global scales of emergency response, population or ecosystem exposure, or
response of visibility, ozone, deposition, and/or particulate matter to emissions control.
In particular, special modules in the CMS will allow the system to assist during
accidental releases of air pollutants and emergency situations. These modules will
provide, among other things, real-time access to on-line meteorological data and
satellite images.

Emissions models within the CMS will aggregate or disaggregate flat files of activity,
land use, meteorological, biogenic, geogenic, point source, area, and mobile source
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data into formats required for input to the air quality models. Diagnostic or prognostic
meteorological models will be used to generate gridded wind, temperature, humidity,
solar radiation, and cloud and precipitation fields, as needed, dealing with complex
terrain as necessary. The coordinate and grid systems will be compatible with those of
the air quality models. Choices for advanced dispersion modeling, such as Monte
_ Carlo-Lagrangian particle methods, able to deal with buoyant, neutral, or dense
plumes, will be available.

Air quality models will be formulated to allow fixed, adaptable, and/or nested grids to be
used on urban, regional, and global scales. Provisions for simulating air-quality
feedback on meteorology will be available. All models will be modularized to the extent
feasible to provide maximum flexibility in configuring models, to facilitate diagnostic
evaluation at the process level, and upgrading of their science. Coding standards will
be established for all air quality modeling software to facilitate transfer of modeling
technology among modeling groups and, in particular, adoption by the CMS. Coding
standards will also be implemented to assure the highest possible degree of
parallelization in the execution of the codes. Models approved for regulatory or
compliance modeling will be accessible in a locked format.

Reflective of its comprehensive nature, the CMS envisioned here also will provide
decision-analysis models to allow users to select optimal choices for responding to
emergencies or implementing emission control strategies, based on the outputs from
the dispersion and air quality models.

1.3 Summary of User’s Requirements

CMS users will possess a wide variety of requirements. First, many of the users will be
involved in some form of regulatory guidance and air quality management, including
State Implementation Plan (SIP) preparation. Others will be involved in scientific
experimentation. Another class of users will use the system for educational purposes.
Many of the users will have limited skills in terms of computational systems expertise,
air quality modeling (including emissions and meteorological modeling), policy analysis,
etc., though some will be experts, having capabilities in individual areas beyond the
CMS designers. Thus, the system will need to provide relatively straightforward access
to the tools provided, yet be able to satisfy the experts’ needs. In addition to facilitating
the human interface to the CMS, issues such as data ownership and security must be
addressed to ensure that the highest degree of scientific integrity and cost-
effectiveness is achieved.

1.4 Summary of Strategy and Goals

As originally envisioned, the CMS would become the platform of choice for future air
quality modeling, from a regulatory standpoint, as well as for scientific investigation.
The CMS should provide all the desired functionality in a readily accessible package.
The goal is thus to design a software system that will provide the necessary
capabilities, including emissions modeling, meteorological modeling, air quality
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modeling and characterization, decision support and air quality analysis (including
visualization), and report preparation assistance. To support the CMS architecture,
individual components will be specified, designed, and implemented where necessary.
However, heavy reliance will be placed on the resources provided by universities,
public domain, and commercial software developers, together with the software
subsystems which accompany the computational platforms.

1.5 Evolution of the CMS Concepts

In this project, we developed initially a CP which provided our initial outline of the
system (the Table of Contents of the CP is enclosed as Appendix A).

The CMS was described at its outset as a “three-legged stool” resting on the concepts
of “All Users”, “All Models”, and “All Platforms”. The concept is outlined in Figure 1-1.

AL UsErs  ALL MODELS

ALL PLATFORMS

Figure 1-1
CMS as a “Three-Legged Stool”

The embodiment of the name “Comprehensive Modeling System” gives an accurate
(albeit simplistic) picture of the vision for CMS established by the project founders as
the “stake in the ground” for the future. The term “All Users”, of course, means that
groups of users of the CMS range from the potentially unsophisticated user, who is
charged with responsibility for monitoring and regulation, to the researchers in
advanced computer modeling and analysis techniques. The term “All Models” was
intended to describe the complete range of models used for the CMS tasks, and would
include existing (or “legacy”) models, as well as new models created to exploit new
science or advances in computer technology. “All Platforms” was meant to signify the
inclusion of the lowly “personal computer” and the modern workstation, as well as the
most advanced CRAY scale supercomputers, in the array of computing systems to be
employed by the CMS.

This design document, we believe, reflects this vision, while recognizing the pragmatic
constraints of budget, resources and time, and the need to deal with operational
environments and the desire to conform to all relevant standards of computer system
development. This document is addressed to three different communities: the CMS
end-user; the CMS sponsors and potential sponsors; and the development team which
will be commissioned to implement the system. Thus, the form of this document is
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somewhat of a hybrid; partly a report, partly an exposition, and partly a design
specification for the CMS.

In the CP, we anticipated the following outline for the Framework Design.
1. Administrative Infrastructure for the Development Phase,

including hierarchy of responsibilities and functions, regulatory
oversight, technical oversight, contract management, people
management, subcontractor management, internal communications,
external public relations

2. Preparation of CMS Blueprint

a plan of action for the development of CMS
3. Implementation Plan

detailed development plan
4. Management Plan

administrative and technical/scientific

Based on today’s knowledge, we believe in the following basic assumptions for
developing the CMS.

e Platform Independence. The CMS will be developed using platform-
independent tools, such as C++ Views. Therefore, the CMS will run
transparently on different hardware/software systems (e.g., OS/2 and Unix,
both with multitasking features). Of course, CMS performance will be different
on different hardware/software systems, depending upon central processing
unit (CPU) speed and CPU availability (if the system is shared with other
users).

e Remote computing. In any platform, the CMS will allow users to perform
remote computing, i.e., to delegate computational tasks to other machines
(e.g., the running of CPU-intensive meteorological models). In any platform,
user’s requests will be examined for CPU time requirements and the user will
know, in advance, the response time. The CMS central location should also
be capable of providing users with CPU cycles, if requested.

An important component of any newly-developed computational tool will be

the presence of the quality of “transparent computing”. In short, this can be
defined as “conducting all or portions of computational tasks on one or more
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1-8

computing platforms without requiring the user to specify the exact sites or
hardware/operating systems which will be used.”

There are several non-competing initiatives underway which are aimed at this
objective, and which can provide the CMS with the basis for operation of its
models beyond a single location and computer system. The Energy Sciences
Network (ESnet), for example, is creating a program called Distributed
Informatics, Computing, and Collaborative Environment (DICCE). The project
involves all of the- DOE national laboratories, as well as commercial
developers such as Cray Research. The final paragraph of the current
DICCE proposal describes many of the properties which are envisioned for
the CMS and would make an excellent basis for exercising those CMS
attributes.

“Imagine you are an end user working in the ESnet Community DICCE
environment a year or two from now. From anywhere on the Internet,
you only have to logon to the environment once. You now ‘see’ the file
system for over twenty ESnet community sites. You can run your jobs
on any system on which you are authenticated; in fact if some of the
requested enhancements to DICCE are funded, you may run your job
and not even know where it is physically running. You have direct
access to numerous facilities on-line. There are whole sets of tools
which appear to you as virtual laboratories or electronic places. You
can remotely run experiments in a secure authenticated fashion. You
can securely send e-mail including binary attachments.”

Central Location. The CMS will have a “central” location — the CMS Center
— where the official version(s) of the entire system is loaded on one computer
system. Users will be able to download programs and files from this central
location. The CMS Center will maintain the official version(s) of the CMS and
all required files. This central location will be capable of providing users with
remote computing cycles and data storage, when requested. The CMS
Center will also serve as host location for visiting scientists on sabbatical from
the home organizations to work on CMS system and science problems.

Minimum Computer Configuration for Access. The two major pieces of
the CMS are: the CMS Application (CMSA) which provides the interface into
the system and the models/modules themselves. The CMSA will run on the
users local machine, while the models/modules can be run either on the local
or a remote machine across the Internet. In this section, we are referring to
the system attributes required to run the CMSA. Computational requirements
for the models are highly modei-dependent.

The CMSA, in its ultimate configuration, may come in several flavors: the
general purpose CMS system, as well as special purpose versions. The
general purpose CMSA will require only the standard input/output (I/O)
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devices expected on any computer: a screen, a keyboard, and a pointing
device, like a mouse. Special purpose versions, such as an emergency
response system, may employ other computer configurations, such as
palmtop digital assistants, for logistical reasons. Such systems could run and
display simple dispersion calculations and provide data input (and dispiay) for
more sophisticated models run on other machines.

In theory, there should not be any minimum hardware requirement, since the
CMS central location should provide, when requested, CPU cycles and data
storage. Therefore, we envision effective use of the CMS (in its final
configuration) even with a laptop computer. Of course, to avoid irregular
burdens on the CMS central location, most users should be encouraged to
download the entire CMS system (or the modules that they need) into their
computer platforms. Palmtop computers, or digital assistants, may play an
important role for a special-purpose version of the CMS for emergency
response, where people in the field (plant managers, fire officers, etc.) could
execute quick simulations on portable computers through the CMS central
location (or other computers).

Proprietary Issues. The CMS will provide the software framework for
performing comprehensive air quality modeling. The framework will be
designed in such a way as to allow the use of either public domain or
proprietary modules to perform the various tasks entailed. At least a base
level of public domain capability will be provided for all the principle
functionalities. Users, however, will have the option of upgrading to
commercial software packages for improved performance and/or functionality
(e.g., for visualization and GIS modules). Of course, the use of proprietary
modules of the CMS will require the application of appropriate user fees.

CMS Development Strategy. Initially, we thought that a top-down approach
was the best. This would have required a precise and detailed design of the
CMS system, followed by a software implementation effort, according to the
design. After further investigation, we now believe that, while a general top-
down framework design is still needed, the development of the CMS should
be based upon a sequence of prototypes, each adding new functionalities.
This approach (fast prototyping) has several advantages and a few
disadvantages. The main disadvantage is that the final system may not be as
well-structured as the system that could have been developed by a full top-
down approach (this may probably be just a problem of form and elegance
instead of substance; also, one must ask how many times, in the history of
software development, a precise design — the best design — could really be
made in advance, especially in the recent years when computer hardware
and software have evolved at a dramatic speed). The other disadvantage is
the risk that the initial prototypes could be useless. The main advantage,
however, is to force developers, from the very beginning, to have a concrete
approach and produce fast, useful deliverables. Aiso, the prototypes will be
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distributed to the scientific community, thus allowing the developers to gather
early feedback and constructive criticism. Last but not least, a sequence of
evolving prototypes may be the only workable choice for a software
development program with limited funding. In conclusion, the best strategy at
this point is the definition of a clear (but flexible and not very detailed)
framework design and the development of a series of prototypes evolving
toward a clear goal. The development should move both bottom-up and top-
down; in fact, each new prototype should allow rethinking and refining of the
framework design, i.e., an adjustment of the final target. (Also, by focusing on
the development of a sequence of prototypes, the developers will be
encouraged to use available products/software instead of re-inventing the
wheel. Prototypes will necessarily require the development of interfaces to
utilize available software, instead of recoding. Again, we will sacrifice some
elegance for cost-effectiveness.)

e Parallel Efforts. We are aware of a number of development efforts that are
similar (or somehow related) to the CMS development by CAMRAQ (Peters
et al., 1995; Novak et al., 1994). Especially in view of some expected
limitations in the CMS development budget, it is mandatory to monitor these
paralle! developments and minimize duplication of effort. This requires some
cost-effective compromise in the design of the system. For example, we may
identify modules developed by other groups (e.g., a comprehensive emission
modeling system or meteorological modeling system) which already
possesses most of the needed requirements of the CMS. These modules
may be implemented on a specific computer platform which is ideal for that
particular module and the software be mostly platform-specific (e.g., strictly
Unix- or PC-based) and, therefore, non-portable to the CMS, as we envision
(i.e., platform independent). At this point, different strategies are possible. In
particular, we may: 1) make the effort of porting and recoding the platform-
dependent module into the platform-independent CMS, or 2) incorporate into
the CMS a module which can only run on a specific platform. The second
choice, though not elegant, can be extremely cost effective, especially for
intermediate prototypes, and provide a workable solution which does not
preclude any of the practical functionalities of the CMS system. In conclusion,
to account for and benefit from paraliel efforts, it is mandatory to maintain a
flexible framework design and develop a CMS through a series of prototypes.

1.6 Framework Design

This report provides a Framework Design of the CMS. We define “framework”, in the
present context, to include the following elements.

e The external organization and collection of resources necessary to support
the access, use, maintenance, documentation, and evolution of the CMS.

 Design of the software systems and hardware comprising the CMS.
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A multi-year implementation plan for the development of the CMS.
e A management plan for the development program.
1.7 A Guide to this Report

At every juncture of a project which aspires to the range and vision of the CMS, it is
imperative that a dispassionate review and discussion of all premises and basis should
take place. This step is even more crucial as we finalize the design phase of the CMS
program. Hence, in Chapter 1 we begin with a restatement of the fundamental aspects
of the CMS on which the system architecture and design are based. Following this, is a
discussion in Chapter 2 of the general CMS design and an overview of its operation.
Chapter 3 discusses the CMS implementation plan, while Chapters 4 and 5 contain the
detailed design specification which will be used as a basis for future evolution of the
implementation of the CMS. Management plan and schedule/cost are provided in
Chapters 6 and 7, respectively. Finally, Chapter 8 contains conclusions and

recommendations.

Additional material in this report includes, at the beginning, an executive summary, a
glossary, a list of abbreviations, and a preface which presents a summary of concepts
and information that have been already presented in the CP. At the end, four
appendices provide additional information (note, in particular, Appendix C which
contains a description of some existing air pollution modeling prototypes and software

products).
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GENERAL DESIGN OF THE CMS

The design of the CMS proceeds from the definition of the user requirements, and then
through the requirements for system efficiency, integrity. and security as prescribed by
the best technologies available in the computer field. This chapter will present a brief
overview of the CMS design and discuss the salient features of the system: 1) the
requirements, 2) the system design, 3) the infrastructure, 4) a typical operation, and 5)
the interfaces.

2.1  Requirements Analysis

To provide a foundation for the design of the CMS, the broad user requirements must
be quantified in some manner. We have chosen to identify system requirements by
three schema: 1) the user's desired view and perceptions of the system; 2) the
demands on system capabilities and resources for representative categories of users;
and, 3) a set of probable scenarios characteristic of different usage of the system.

2.1.1 The User Perspective

The CMS user sees the system through a series of interactions with the facilities
provided by what should essentially appear to be a “black box” containing all the
required functions. The primary interface will be through a set of standard graphical
user interfaces (GUI) which promote the effective use of the system by even uninitiated
users.

One user view of the “CMS black box” is displayed in Figure 2-1. The users may be
aware of a hardware-like “backplane” of communications and software “glue”, but their
focus is on the functions offered by the CMS through the GUI. The users may be
aware of the demands their work may make on system resources, but the CMS will
reflect the availability and cost of those resources to the user in the course of CMS

usage.
2.1.2 System Demands

Different system resources are required for each type of use. The CMS design must
encompass the foreseeable range of resource requirements as outlined in Table 2-1,in

In the electronics industry a “backplane” provides the interconnection of all active electronic
components. This used to be a mat of wires and is now commonly a printed circuit board, like the
“motherboard” in a PC.
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which “interface detail” refers to how much of the detail of making a model run is
presented to the user in the interface. The “Must be Local’ data volume refers to
storage directly needed to make the run, such as model input/output. The “Could be
Remote” data volume refers to data that typically need to be extracted from very large
datasets residing on the Internet such as the USGS topography data. CPU
performance is an admittedly vague characterization of required horsepower to get the
job done in a “reasonable” time. In rough terms, “low” might correspond to a Pentium
90, “medium” to a mid-range workstation such as an Indigo”2, and “high” to high-end
workstations or “supercomputers”, such as the SGI Challenge system.
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Figure 2-1
A User Perspective of the CMS
Table 2-1
Resource Requirements
Interface (Must be local) (Could be remote) RAM CPU | Response
Detail Data Volume Data Volume Required Perf Time
Regulatory med 1-10GB 10s to 100s of MB 64-1024 med - hours -
Photochemical MB high days
Regulatory Non- | low - med 1-10GB 10s of MB 16-256 low - hours -
Reactive , MB _high | days
Scientific Studies | med - high 1-100 GB 10s to 10,000s of MB | 64-1024 med - hours -
MB _high | weeks
Emergency low 1-10GB 10s of MB 64-512 low- minutes -
Management MB med hours
Model high 1-100 GB 10s to 10,000s of MB | 64-1024 med - hours -
Developers MB high days
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2.1.3 Scenarios

The system resource requirements must also be viewed in the context of how the
system will be used in the most probable ways. The following scenarios describe the
cases which have been identified as design points for the CMS.

- baseline simulation

- sensitivity/uncertainty

- new science

- control strategy

- permitting _

- exposure/risk assessment/cost-benefit analysis
- emergency preparedness and response

These seven scenarios, which are further discussed below, show examples of how the
CMS will be used. There are, of course, other applications in which air quality,
emissions, and meteorological models are currently used. The CMS could also take on
those duties. Also, we fully expect that more uses will be identified. For one, long-term
evolution of the CMS is expected to be towards multimedia pollution impacts, i.e., the
simulation of transport and fate of pollutants in air, water, soil, groundwater, and biota.

2.1.3.1 Baseline simulation. The initial use of the CMS in many applications,
especially those related to photochemical simulations, will likely be for the development
of base case air quality model simulations. In this scenario, the CMS user will apply the
CMS to develop emissions, meteorological, and other air quality model inputs. These
air quality model inputs will refiect suspected conditions in a specific regional/urban
mode! domain (e.g., regional: Northeast United States, the Midwest, the San Joaquin
Valley; urban: Los Angeles, CA, Atlanta, GA, Phoenix, AZ) for a specific model episode
(e.g., August 3 through 6, 1991). The various components of the CMS will be
exercised, and the results of each CMS execution will be compared against a set of
observed fields available on-fine. If the comparison of the CMS results against
observed fields falls within the predefined acceptance criteria, the baseline scenario will
be considered established, and the CMS baseline model results will be considered as a
candidate for use in the other CMS scenarios.

2.1.3.2 Sensitivity/uncertainty. The purpose of a sensitivity study is to determine the
influence of input parameters that affect the emissions model, the meteorological
model, and the air quality model (AQM). The basic notion is that of the hundreds of
inputs (there are actually thousands depending on how they are counted) to the CMS,
only a small subset may make a significant difference in the actual model predictions
(i.e., the other inputs get lost in the “noise” of the major factors). The purpose of a
sensitivity study is to identify those major components that most affect the results of
CMS execution and quantify the model response to those inputs.

The purpose of an uncertainty study is similar, except that the concern is how
uncertainties in the inputs affect the outputs — again, if the major (or most sensitive)
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components have an uncertainty of +/- 5% while some minor components have an
uncertainty of +/- 50%, then the predictions still have a low uncertainty. However, if the
major components have uncertainties of +/- 50% or 100%, then the predictions will also
be significantly uncertain. There are several different strategies to determine
sensitivity/uncertainty and several groups are looking at the problem. The type of study
that we have been considering so far would be the “brute force” approach. In such a
study, the 100 different inputs to be varied would be identified. The CMS is then run
with each of these inputs varied in such a way as to assess which ones are the major
components of the predictions. The major concern from an analysis point of view, is
setting up the changes to the inputs (on the “front end”) and then comparing the
differences in the predictions (on the “back end”). More powerful methods are in
development.

Several recent studies on sensitivity/uncertainty analysis should be mentioned as
potential candidates for providing routines and methodologies for the CMS. These
studies include: Horwedel et al. (1992), who discuss an automated sensitivity analysis
of an atmospheric dispersion model; Hwang and Byun (1995), who apply automatic
differentiation for studying the sensitivity of numerical advection schemes in air quality
models; Jeffries and Tonnesen (1994), who developed a process analysis method in
which a complete mass balance is used to quantify characteristic values of the air
quality reactive system; Rao et al. (1996), who demonstrate that observed ozone time
series are comprised of deterministic and stochastic components, with stochastic
variations that cannot be controlled; and Isukapalli and Georgopoulos (1995), who
apply stochastic response surface methods to uncertainty analysis of photochemical
models.

2.1.3.3 New science. The purpose of this type of study is to examine how improving
(or modifying) the science embodied in the CMS impacts the results. Recall that the
AQM (or meteorological or emissions model) is a simplification of the processes that go
on in the atmosphere or at the surface. As our knowledge of how the atmosphere
works is refined, the CMS must be updated so that it continues to embody the “best
science”. There are several classes of changes that might be made to the CMS. The
simplest would involve simply changing constants embodied in the program, e.g., the
rate constants for the equations in the chemistry module. More relevant changes might
require modification of the way a certain calculation is performed. In some cases, a
change would be the addition of some new module - for instance, cloud chemistry, or
aqueous-phase calculations which would sit “on top” of the existing code.

The major issues in this type of study are how to allow the modeler to change the
source code of the CMS and how to validate the predictions (model performance
evaluation) of the changed model. There are certain types of changes and additions
that the CMS has already been designed to handle and these changes would be easy
to make in a properly modularized CMS code. On the other hand, certain situations will
arise where these changes are not “simple”. There must be support within the CMS for
changing the internals of an AQM and for doing this in a “convenient” way (i.e., not on
the FORTRAN code level). There must also be support for validating the results of a
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modified AQM with some “baseline” scenario to ensure that the AQM stili “performs” (in
terms of making valid predictions) properly overall.

2.1.3.4 Control strategy. The purpose of the control strategy study is to quantify how
some change in the predicted levels of a certain pollutant respond to emissions
changes. There are several different ways of phrasing goals for such a study - for
instance, by lowering the peak daily levels, lowering annual exposure, and by
performing a multi-objective analysis.

The system must allow the user to modify the inputs to the CMS in such a way that the
effect of controls can be emulated. For instance, the modeler might want to “eliminate”
certain point sources from the domain or perhaps reduce emissions of a certain source
by use of some control technology. The important aspect of this type of study is to
provide the user the hooks to change the inputs and then a way to compare the outputs
against some “baseline” version. This type of study may well require many runs of an
AQM, but will be different from the sensitivity/uncertainty case in that the runs will be
more “interactive”. In the sensitivity study, it will usually be possible to specify 10s or
100s of runs at one time, whereas the control strategy study will consist of “What if?”
scenarios performed interactively.

2.1.3.5 Permitting. We envision a CMS which includes those models regularly used
for permitting of facilities. These models are widely used and are currently supported by
a number of consulting firms. However, they can be advantageously linked into a CMS.
For one, the CMS meteorological models can be used to provide better wind field
information and the model components can be used to provide the corresponding data
as well. These added capabilities would greatly ease the application of such models.
Further, the visualization and decision support tools in the CMS would be of direct
benefit as well. In fact, while much of the description of the “air quality modeling”
component of the CMS may seem geared toward the more advanced models (e.g.,
regional photochemical models), that is in part because they are more demanding,
thus, setting the requirements for the CMS structure. The simpler models are
envisioned to be part of the suite of air quality models provided.

In the permitting scenario, the applicable model would be chosen from a suite of
models presented to the user, along with the guidelines for appropriate use (including
its status in terms of approval for permitting). The user then would link it to the
appropriate inputs and conduct a set of calculations to find the impact of the emissions
on local air quality. This information would then be used by the decision support tools
to conduct a risk assessment.

2.1.3.6 Exposure/risk assessment/cost-benefit analysis. Exposure, risk assess-
ment, and cost-benefit analysis is taking a more prominent position in regulatory
decision making. Such calculations are conducted using a variety of models, including
photochemical and toxics. In such cases, the AQMs provide an estimate of how
sources impact air quality. Then, other components of the CMS use such information,
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along with information on population distributions, personal activity, toxicity, control
costs, etc., to provide the type of information used by decision makers and planners.

2.1.3.7 Emergency preparedness and response. Emergency preparedness is
essentially a decision support usage of CMS, where meteorological and dispersion
modeling are used to understand potential public health impacts of unplanned releases
of toxic substances into the atmosphere. Emergency preparedness implies the use of
models to understand potential effects from releases that have not occurred. Title 3 of
the 1990 Clean Air Act requires all sites containing hazardous substances over a
threshold limit to prepare a Risk Management Plan (RMP) looking at impacts from a
“worst case scenario” as well as several more likely scenarios. “Worst Case” applies to
both the release characteristics and the meteorological conditions. The EPA wording
acknowledges the need to go beyond straight-line Gaussian type modeling in cases
involving complex terrain or unique meteorological conditions.

One portion of the RMP is a plan to respond to emergencies in a real-time mode. This
places a tremendous constraint on the run time of the model, if guidance is to be
obtained in a useful timeframe. Compromises in model sophistication and resolution
must be made. In many cases several models can be deployed, covering different time
and space scales (or, better, models with adaptive grid size and time increments can
be used). The time constraint also imposes limits on how much detail the user can be
expected to deal with in getting the model started and interpreting the model output.

2.2 System Design

The CMS must deal with the user's requirements identified in Section 2.1, on the one
hand, and the realities of existing and future hardware and software systems on the
other. The top level system design is illustrated in Figure 2-2. Note that we define the
CMS Application (CMSA) as that part of the program that must run on the local
machine (i.e., the GUI/CMS interface in Figures 2-2 and 2-3).

The user interacts with the CMS through a graphical user interface (GUI), though the
type of interface may expand to include other input/output modalities. Members of the
CMS community, at any one time, may be accessing data and services (e.g., models,
visualization, etc.) to complete a specific task similar to one of the scenarios described
in Section 2.1. Connectivity between the user and the CMS services is provided by the
CMS manager, which is part of the CMS system and infrastructure. Figure 2-3 shows
the CMS design in more detail and from a different angle.
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The design of the CMS itself has many facets, the user perspective, the system
perspective, and the implementation and management perspectives to be discussed
in subsequent sections of this document. This design provides the key attributes to
make the CMS effective and to ensure its portable mapping onto the widest range of
hardware and operating systems platforms possible. We provide in the subsections
below, some preliminary discussion of a few key elements (the user interface, the
CMS Manager, and a few system services) illustrated in Figures 2-2 and 2-3.

2.2.1 The User Interface

The CMS user interface must provide human interaction to persons with varied levels
of expertise in their own fields while possessing, in some cases, small literacy in the
vernacular of the computer industry. One of the principle requirements discussed
previously is the concept of “transparency” wherein the user deals with the CMS in
exactly the same way regardless of the location and type of databases and computer
systems being employed at the time. An important system requirement is that the user
interface, as all other components of the CMS, be “platform neutral” or “platform
independent”.

There are several readily available software systems which support the creation and
operation of a GUI to provide the user interaction. Specifications for this system
component may be found in Section 3.5.1.1 of this document. The user will see an
identical interface on every terminal that they will use to access the system, whether it
is a PC running Windows95, Windows NT, MacOS, or 0S/2, or whether it is a Unix
workstation running a manufacturer's own implementation of Motif.

This “GUI” will present choices, accept and interpret user inputs, draw the operator
through a series of steps to initialize, execute models, and supporting software, store
and retrieve data, and analyze and publish the results. Figure 2-4 contains an
example of a sequence of screen displays which are the consequences of a user
starting up the CMS (upper left screen display), selecting the photochemical modeling
component (middle screen display), and choosing the Los Angeles Basin and its
database as the object of this particular run (lower right screen display).

2.2.2 CMS Manager

The CMS management services are used to control startup, shutdown, error handling,
and administration of the CMS. This facility maintains oversight of all clients and
services and handles adding and removing facilities, as well as restarting clients,
services, and models, where appropriate.

2.2.3CMS System Services

The CMS System Services contain the real heart of the CMS. The system services
operate directly on the data. In this regard, the internal design of the CMS could be
termed “data centered”. The data in this case contains not only the obvious cases of
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model input and output data, but the programs themselves, and auxiliary data such as
GIS and other graphical mapping information. Thus, an important component of the
CMS will be a comprehensive database management system which is capable of
dealing with a variety of data formats, providing conversions where necessary. We
discuss in more detail below the database management system, the program manage-
ment, and the functional services.

2.2.3.1 Database  management system. The database system
characteristics are specified in detail in Section 5.3, but it is important to highlight here
that this system must be able to provide internal security and integrity checks, even
when the databases or portions thereof, are geographically scattered and accessible
only through relatively unsecured network connections.

Since one of our principal goals is for the CMS to be “platform independent” it is
essential that this program adopt a standard database system which is demonstrably
“platform neutral”. Although a specific system has not been chosen, we have the good
fortune to be initiating this program at a time when several excellent subsystems are
coming to maturity from commercial as well as academic researchers. At this point, the
most important aspect of the design is not the brand name of the database system but
the completeness of its specifications which will need further review.

Figure 2-4
Graphical User Interface — Example
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2.2.3.2 Program management. [t is very likely that a general purpose
database management system, which is optimized for the efficient retrieval and
dissemination of large, complex datasets, will not supply the mechanisms to manage
and control the actual program suites which comprises the computational core of the
CMS. One goal of this CMS design is to bring into a common context all of the
programs, modules, subprograms, and libraries which will appear in the system. A
modem method for conceiving of and managing such a myriad of components is
known as “object oriented”.

When used as a design process, it is called “object-oriented design” (OOD) and almost
every phase of system development and operation can have the letters “00” pre-
appended these days. Despite some misplaced hyperbole about “O0” systems in the
past, the technology is now in hand and the training in its application is widespread.
Thus, the CMS will utilize an object-oriented program management system which is
described in Appendix B, and for which again there are several excellent candidates
which exhibit not only the desirable “O0” properties but are themselves fully “platform
neutral”. The common object resource broker architecture (CORBA) is an example
and is described in Section 5.6. A further description of the goals and processes of
“00” development may be found in Appendix B.

In the CMS, many existing meteorological, emissions and dispersion programs will be
incorporated by providing a “CMS Wrapper” which consists of additional code and
data structures to give them the appearance of self-contained objects. This concept of
using extra code to “wrap” around “legacy” models to provide the appearance of
common objects is discussed further in Section 5.7.

2.2.3.3 Functional services. In addition to the database and program
management services, the CMS provides facilities for managing each of the major
functions which comprises the system: meteorological service, emissions service, air
quality modeling service. For example, the emissions service possesses knowledge
of the various information requirements of the emissions models imbedded in the CMS
and can generate the requisite database depending upon the user inputs. A detailed
description of these services may be found in Section 5.5. Functional services also
include the visualization service, the batch service, and the real-time service.

2.3 The CMS “Infrastructure”

The CMS infrastructure embodies the system as a whole. To illustrate the task which
the CMS infrastructure must perform, the following three figures demonstrate how the
CMS may actually be employed:

Figure 2-5 depicts the simplest “instantiation” of the CMS. In this case all of the CMS
components reside on a single machine with all programs and data resident on a local

*  “Instantiation” is the creation, or starting up, of a new copy (or instance) of a program, object, o process
in a computing system.
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disk. As far as security is concerned it is presumed that if a user can sit at the terminal
and login, they have access to all the components for which their login has permission.
This example also presumes that there is sufficient computer power and data storage
to fully accomplish the tasks presented to it, perhaps one of the scenarios given in
Section 2.1.3. The user perceives (and rightly so) that all of the resources are close at
hand and under the control of the user and the machine with which he is interacting. In
this case, there is minimal requirement for the functions we have designated the “CMS

infrastructure”.
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Figure 2-5
Self-Contained System

Figure 2-6 displays a more complicated system arrangement than the previous
example. The terminal at which the user is working contains neither the data nor the
programs which are required for the user's tasks. The function of the terminal is to
provide the GUI functions. The remainder of the programs and functions provided by
the services layer reside on a computer remote from the user. This implies that there is
some sort of communications network between the two systems. To make this example
more complex, we assume that the network is a common carrier or Internet system so
that the security of information transmitted must be ensured by the user or user-
directed processes at each end of the communications.
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Figure 2-6
Remote Model Execution

Finally, in Figure 2-7 we have an apparently confusing, but quite realistic, use of the
CMS. Since it is neither sensible nor desirable to transport all databases to a single
computer site to be used in computations, the figure gives a very probable
representation of the CMS topology when employed on large, complex tasks. A key
aspect of the CMS design is, as we stated previously, the presence of a very robust
database management system. Such a system attempts to provide as many data
resources as possible, but it must perform all of its functions when the data resources
are not all collocated with each other or even with a major computing resource. As in
our previous example, we will assume that all of the network connections are insecure
in themselves, the most common linkage being the ubiquitous Internet system.
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Figure 2-7
Multiple Platform Execution

2-12



General Design of the CMS

Now consider Figures 2-5, 2-6, and 2-7 together with the requirements for “platform
independence” and “transparency”. The platform independence herein means that all of
the functions could be performed on almost any brand of hardware and operating
system. This implies also that functions might move between platforms as network
topologies evolve and the economics of new hardware and software and user
requirements become manifest.

The transparency element is demonstrated dramatically here as the system strives to
provide the identical interfaces, actions, and system reactions to the user in_all three
cases. Except for having to deal with, and acknowledge system prompts, relating to the
different ‘costs’ associated with performing functions on more expensive machines and
over higher rate communications systems, the user will see no other difference
between operating with the schema shown in Figure 2-5 and those of Figure 2-6 or 2-7.
We envision this transparency feature as an essential pre-requisite of the CMS, to
assure its general use among the air pollution community.

As part of the CMS infrastructure, we present below some additional information about
the management of processes/communications and file systems/security/integrity.

2.3.1 Management of Processes and Communications

If the CMS was only to exist on a single computing system and be accessed by a single
user at a time it would be possible to implement most of the system as a collection of
programs and subroutines. The previous discussions make clear that a far more robust
system is required. Hence, the CMS is divided up into entities which contain one or
more programs. Many of these entities are semi-autonomous and may be executed on
one or more computer systems. They can communicate with other entities and
perhaps even invoke services on other computing nodes.

The relationship between a multiplicity of asynchronous processes can create chaos in
even moderately complex systems. To avoid this chaos, a set of formalisms have been
developed over time to describe and bound the creation, operation, and interaction of
such entities. Fortunately, the CMS is far from unique in many of its requirements.
Systems as varied as on-line airline reservations to banking systems share many of the
same needs. In response to this, a significant effort in this area has resulted in the
Open Software Specification of the distributed computing environment (DCE) which is
now provided by every vendor of computing hardware and operating systems, including
Unix systems as well as the PC-based Windows 95, Windows NT, MacOS, and OS/2.
Thus, the underlying “backplane” of the CMS infrastructure is the DCE, providing a
platform independent system and schema for managing the entire CMS.

Figure 2-8 provides a simple sketch of the basics of the DCE. A much more detailed
description of the DCE and the DCE-based mechanisms employed in the CMS are
covered in Section 5.8. However, the reader will encounter several terms, throughout
the remainder of this chapter, which are simple enough to describe here. First, as
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Figure 2-8 shows, the basic DCE provides for accurate time synchronization, system-
wide directory services, and elective security among all CPUs in the system. In
addition, a simple mechanism for invoking or requesting services of another entity is
through a remote procedure call (RPC). A RPC could be viewed simply as an
extension of the use of subroutines and functions in Fortran and “C” programming. For
example :

PROGRAM MAIN
CALL COMPUTE_NORMAL(X, Y, Z, NORMAL)

END
SUBROUTINE COMPUTE_NORMAL(X, Y, Z, NORMAL)

END
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Figure 2-8

The Distributed Computing Environment (DCE)

In the ‘traditional’ model, this main and this subprogram would be compiled together
and the execution of both would be within the same user process on the same
machine. A common variant would be where the subroutine “‘compute_normal” would
have been previously compiled and perhaps placed in a “library” which is later linked to
the main program. The subroutine would still be executed as part of the same user
process as the main program and on the same machine.

If it is desired to have the subroutine executed in a separate process from the user-
process, as when there is a need for security or shared code and data, the subroutine
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call can be converted by the compiler or the system to a RPC. This change can, in
many cases, be made invisible to the user and the source code shown above would
remain unchanged. Once a function can be invoked through a RPC, it is a simple step
to permit execution on a platform different from the one on which the main program is
executing.

The concept of RPC has been around for many years and is a fundamental property of
all Unix systems. The DCE has carried the concept further and has created a more
formal structure to the calling process which makes it possible to perform rigorous
authentication and management of the intercommunications. Particular attention has
been paid to the efficiency of these RPC implementations such that use of an RPC
instead of a normal subroutine interface will normally not impose unacceptable
execution ‘overhead’. The concepts of system “clients” and “servers” has also been
codified and specifications as to what type of functions each entity performs are part of
the DCE standard. In the simplest terms, a “client” is an element which requests one or
more services from a “server”. The CMS design uses these formalisms as an
underpinning to similar specifications for CMS clients and servers. For example, the
database subsystem specified in Section 5.3 will operate as a “server”; however, there
are occasions when it must request a function from another CMS “server”.

2.3.2 File Systems, Security, and Integrity

Underlying the database management system will also be a standard mechanism for
securing the integrity and access to the data files within the CMS. The DCE provides a
basic distributed file system (DFS), which can be augmented with Kerebros security
mechanisms. Again, these systems are available on all computing platforms and have
become industry standards, so that “platform neutrality” of all of the base components
of the CMS is assured.

2.4 Typical Operation

As an example, to describe a typical operation of the CMS, we will illustrate the general
sequence of tasks in running a meteorological model to produce meteorological
conditions fields for use in an air quality model. We will then follow through on what
activities are required in the CMS to accomplish the tasks.

2.4.1 The User Actions

This run-through of user actions required to accomplish the meteorological simulation
are not meant to imply that the details of the meterological modeling GUI have been
fully determined, but rather to serve as an illustration of the types of interactions
expected in the CMS. A diagram of the major processes involved is also shown with a
brief description of the actions, shown as subparagraphs ‘a’ through ‘u’.

* Login.. Toa CMS Client node and startup the initial GUI display.
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In Figure 2-9, the following actions are performed.
a. The client establishes its identity with the security system.

b. The security system notifies the CMS that the client has permission
to access the resources.

c. The client requests linkage to the CMS management server.
d. The client registers with the CMS management server which

determines what services will be available to this client and
session. A list of eligible CMS functions is delivered to the client.

Access Validation
DCE Security AR

Locate CMS Resources
DCE Registry

-?
Available Services
DCE Management

Figure 2-9
Login to CMS
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e Select .. “Run Met Simulation” from the GUI menus. The system will display a
group of supported models from which to choose.

In Figure 2-10, the following actions are performed:

e. The client requests the meteorological services from the CMS
manager which instantiates the module and gives permission for
access by the client (j).

f. The CMS meteorology server provides the client with a list of
available models which is extracted from the models database
upon a request to the CMS programs/objects manager (i). The
client communicates the model selection (which the CMS manager
then also registers).

g & h. The model object ‘driver is started by the CMS meteorology
server and this interface and the server provides the client with
modeling requirements information.
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Figure 2-10
Select Model
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2-18

Identify .. The model is identified by double-clicking on its name in the menu.
The system then displays a large scale map from which to select the modeling
domain. This map will display coverage areas of local and remote datasets
useable to initialize the model. On-line help for the model setup, execution, and
analysis is available by clicking on appropriate menu items.

Establish .. The model domain by dragging a ‘rubberband }box’ across the map.
Choose .. The horizontal and vertical structure of the grid(s).

Display .. This action displays a list of all physical surface characteristics
required by the chosen model. Click on “Acquire Surface Characteristics Data”
button.

List .. This action lists Resources that are available locally and over the Internet,
and the characteristics of the datasets; i.e., resolution, accuracy, etc., by clicking
on the desired surface data item.

Determine .. This action allows the user to determine one of the alternative
sources by double clicking on it. The system then goes out and transfers the
data required for the chosen grid, and under user guidance, samples/averages/
filters the data onto the specified grid(s).

Repeat .. This action is a repetion for each of the surface characterization fields.
The user clicks “Done” in the “Acquire Surface Characteristics Data” window
when done. At each stage the user can access the data in the CMS visualization
system to interactively view/edit the model grid values. This will also be true for
all data entered, including meterological data and others.
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e Pick .. This action picks the source data for the model. The user clicks on the
“Acquire Meteorological Data” button. The system displays a list of all required
and related datasets available locally or on the Internet. This includes auxiliary
data such as satellite imagery.

In Figure 2-11, the following actions are preformed:

k. The client requests map data with increasing levels of refinement.
Surface data is then requested for the region selected by the user
from the maps provided. The type and format of surface data
needed is provided by the model “driver”.

| & m. The client selects the model data to be used based on the
requirements of the particular model. Note that the data is not sent
to the client but information as to the source files is provided to
both the client and the model driver (n & 0).

GIS Maps & Surfaces

CMS Database Manager

A,

Model
Drivers

n.
\ 4

Meteorological Data

=

CMS Database Manager

Figure 2-11
Setup Model
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2-20

Setup .. The user sets up the run by clicking on the “Model Setup Options”
button. The system prompts the user to enter the level of detail they wish to be
presented with. The system then brings up an additional window or windows for
choosing model parameters.

Decide .. The user decides on the operational parameters for the run. Once the
model setup is complete, the system informs the user of time and cost estimates
for making the run (and in some cases transferring the data) on the local system
and any remote systems to which the user has access.

Start .. The user starts the model execution. During the run the user may
analyze/visualize the model output up to the latest frame. The model may also
have facilities for corrective “steering” as it runs by tweaking parameters on the
fly. The CMS must be able to support this both for local and remote systems.
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Store .. The user stores and disseminates the result data. After the run is
complete, the user has the option to “publish” the run to other CMS users. That
is, to make the input, output, and parameter selection available to other CMS
users who may be looking for an appropriate met simulation to test their latest
AQM on.

In Figure 2-12, the following actions are performed:

p. The client “negotiates” with the CMS manager to determine how
the model run is to be made. The costs and efficiencies involved in
the site for the computations, determinations as to whether data
should be moved to that site or “mounted” across the networks, will
influence the decisions regarding the model execution.

g, 1, &s. The CMS manager performs any necessary data movement
and scheduling of the actual model run on the selected
computational resource.

t&u. The client interacts with the model and the model database
during model execution (if desired) and makes dispositions of the
results data when necessary.
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2.4.2 System Services and Actions

The major system activities which take place for this example and which are shown in
previous figures and annotations could take place on a single CPU or across a network
of CPU’s. To manage such transparency; however, some caré is required in the
subdivision of the various functions in the CMS. Therein lies the major challenge of the
CMS design, the identification of separable entities, which we have called “clients and
servers”. The rational for the subdivision and constituents of the CMS is described in
Chapter 5.

2.5 CMS Interfaces

The CMS interfaces consist of the low-level software systems which provide most of the
interfaces between the CMS services and the native operating system on a given
platform. As stated previously, these interfaces are comprised of standard, “platform
neutral” elements which derive from the open system foundation’s developments for the
distribution of computation and file system resources as well as security across a
(potentially) heterogeneous, stand-alone, network-connected machines. A sketch of
this system appeared in Section 2.3, but as the reader might expect, the infrastructure
itself is a series of layers, any one of which may interface to the CMS services or the
user application. These relationships will be discussed in Chapter 4.
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IMPLEMENTATION PLAN

The premise for our implementation approach is that it is not practical, and arguably not
possible, to specify ahead of time every implementation detail and anticipate the
consequences of every interaction between system components for a system such as
the CMS. Recently there has been increasing work in the field of understanding
complex systems. Nobel prize winning high-energy physicist Murray Gell-Mann, among
others, have been looking at questions such as defining complexity and understanding
how complex systems develop (Gell-Mann, 1995). The key to the successful
development of complexity (such as a biological entity or a child learning to speak) lies
in a concept he calls the “complex adaptive system”. The key word here is “adaptive”
and success depends on the systems repeatedly testing their latest schema against
reality and adapting from that experience. In the case of biological systems, the “test” is
that of successfully competing and passing along their genetic schema to the next
generation. In the case of a child, it may be in the form of trying out their latest
understanding of grammatical constructs by talking with their parents.

3.1  Evolution Through Prototyping

We believe the same principles apply to development of a complex software system. By
developing the CMS as a series of increasingly comprehensive prototypes that are
tested by actual users, we can adapt the system as we go, that is, evolve the system.
This is distinctly different than the concept of “learning” prototypes. A learning prototype
is considered a throw-away, designed to help understand some aspect of the problem,
to fill in some missing pieces in what is still a top-down design process. Our prototypes
are intended to be on the main evolutionary branch to the full CMS. In the case of the
CMS, we start with a good understanding of the users’ functional requirements for the
system. From this we can develop a rough “system design” based on the team’s
experience in other software development projects. This reflects the state of our
knowledge at the beginning of the CMS development process. By adopting an adaptive
approach, we can make adjustments as we go, based both on our increasing
knowledge and on changing external factors, such as new hardware and software
products or revised user requirements.

It is important to note that, in our approach based upon the development of a series of
increasingly complex and comprehensive prototypes, we also plan to pause and
reassess our development strategy at the completion of each new prototype. This
reevaluation process will allow, periodically, to assess the trade-off between continuing
with the next prototype effort or moving to an alternative approach. The development

3-1



Implementation Plan

team will present comments and recommendations to CAMRAQ on this subject at the
end of each prototype development.

3.2 Prototype Goals

Based on the experiences of the CMS design team members, there are at least five
major factors that go into deciding the design goals of a particular prototype version:

1. Prioritization of the needs of the user/funder community.
2. Availability of existing components.

3. The degree to which a particular aspect of the system is fundamental (i.e., it
needs to be in place in order to integrate other subsystems/components).

4. Lessons learned (and fixes required) from the previous prototype.
5. Level of funding available.

Each version must present new air quality modeling functionality to the user. That is to
say, that a new version should not only provide upgrades to the underlying foundation
of the system, but also allow them to perform additional tasks. Thus, for each new
prototype there is a delicate balance between new user-oriented features, structural
improvements, new platforms, and new documentation; all on a limited budget. This
should sound familiar to anyone who has ever been associated with developing
commercial software. That is probably another good way of thinking about our
implementation strategy: the CMS must compete every step of the way with other
governmental and commercial development efforts. Hopefully, in many cases, the most
competitive strategy will be to find ways to cooperate. The fact that the CMS must
remain competitive is a healthy dose of reality for the implementers. Without this kind of
“real world” stress, projects like the CMS risk turning into exercises not grounded in
reality.

3.3 Prototype #1

Prototype #1 is expected to be completed shortly after the completion of this report.
This prototype has been developed to assist, as a parallel effort (“fast prototyping”), in
the design of the CMS framework, to provide a tool for presentation/demonstration/
marketing, and, most importantly, to perform actual simulation studies and be used by
CAMRAQ members and other parties for practical air quality evaluations.
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The prototype possesses five major characteristics:
1. lts primary focus is on the issue of tropospheric ozone.

2. It fulfills some of the needs not currently satisfied by available systems and
prototypes.

3. ltis portable and installable on different platforms.
4. Itis easy to run through a user-friendly interface.
5. It contains advanced 3D visualization features.

The primary challenge in defining the first prototype version was to put together a
system on a very limited budget that displayed some of the most important aspects of a
CMS. At its most basic, a CMS must provide users with the capability to setup and run
an AQM with an easy to use GUI, and to interactively analyze model outputs versus
observations. The model of most immediate significance to the CAMRAQ group was
the UAM-|V photochemical model as it is being widely used in the production of state
SIPs for the minimization, and eventual elimination of ozone episodes. It is also being
used in Canada and Europe. As it was not possible within this phase to develop a full
GUI to all aspects of UAM-IV setup, it was decided to provide a limited (but still useful)
capability for altering the emissions inputs into the UAM-IV. UAM-IV was chosen as the
first model because of its wide usage. Other photochemical models can be added with
relatively minor adjustments.

Prototype #1 is limited in the sense that it is designed to be applied only in a few
regions of the US during pre-selected time periods of several days for which emission
and meteorological data files are provided. New regions and new time periods,
however, can be easily added to the prototype, depending upon users’ needs.

3.3.1 Platform Independence

One of the key CMS atiributes is the ability to run on multiple platforms. Several steps
have been taken to this end in the CMS Prototype Version 1.0:

File Structure: The model output files use the MeRAF file format based on
netCDF. This provides a binary, random access, hierarchical file structure
that works on both Unix workstations and PC’s.

GUI: All GUI work has been done using a platform independent development
tool, C++/Views. This allows us to transport the application between all the
major PC and workstation platforms with a recompile and minimal screen
format adjustments.
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The prototype will be delivered on at least two platforms: a PC-version running 0S/2
Warp, and a SUN workstation version running under Solaris 2.3/2.4. The choice of a
PC operating system came down to OS/2 or Windows NT, since Windows 3.1 has
neither the multi-tasking nor memory protection capabilities required for an application
such as the CMS. OS/2 was chosen based on its larger installed base, cheaper price,

3D Graphics: The savi3D was used for 3D graphics. This package runs on
both workstations and PC. The main attributes of this package are its ease of
use and interactive nature. It allows the user to explore a 3D dataset with a
combination of isosurfaces and slices for gridded data, coupled with a variety
of display options for discrete observational data. Additional discussion on
savi3D is provided in Appendix C.

PC Compiler: The WATCOM C++ compiler was chosen for the PC because
of its excellent multi-platform and cross-platform support. It allows a user to
compile to a single set of object files, and then link to an executable targeted
for any of the major and several of the minor PC operating systems.
WATCOM Fortran provides the same multi-platform capabilities as well as
being linkable with C++ object files. (However, WATCOM compilers are not
directly portable to Unix workstations.)

and experience base within the team.

3.3.2 Prototype Operation

The user starts the CMS Application (CMSA) written in C++ Views and is presented

with a CMS logo, a map of the world and the following four buttons (see Figure 3-1):

Beginners click here — which provides a basic description and nontechnical
summary of the CMS concept and the prototype

Simulation — to perform a new simulation (see below)
Analysis — to analyze previous simulations or on-line data and information
Others — which opens a new set of six buttons, as follows:

- Tutorial — which provides a full tutorial on how to use the prototype

- Regulations — which provides a summary of air quality regulations
(national and international)

- Education — which provides a set of electronic chapters on air
pollution, atmospheric sciences, computer modeling, numerical
methods, etc.

- Communications — which provides a set of utilities to communicate
with other computer systems and external data bases

- CMS Bulletin Board — which provides access to the CAMRAQ bulletin
board
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- Research — which provides a technical discussion on the modules of
the prototype and related references.

Comprehensive Modeling System | #% &
{CMS) or |l

for Air Pollution { i

Prototype Version 1.0  September 1995 \..;‘ i

ot

i
2

H K1
]

Figure 3-1
Initial Screen of CMS Prototype Version 1.0

By clicking the Simulation button, a map of the world is presented with the choice of
two buttons:

1. non-reactive/first-order-reaction simulation, and
2. photochemical/higher-order reaction simulation.

If Choice 1 is selected, the map highlights those areas in which terrain data are
available on-line. The user is asked to select a rectangular region by specifying
latitude and longitude. Different modules are then available to simulate atmospheric
dispersion using diagnostic wind models and Lagrangian simulation techniques.
Simulations include first-order terms to account for deposition and chemical
transformation.

If Choice 2 is selected (see Figure 3-2), the user is presented with a choice of a few
regions in the US (e.g., Los Angeles, Houston, New York, Chicago, Atlanta). After the
region is selected, the user is presented with a choice of photochemical models (UAM-
IV, UAM-V, CALGRID, CIT, ...). Only UAM-IV is actually available for selection in this
prototype. UAM-IV is provided in two versions™: the standard code, plus a fast version

The two versions of UAM-IV are: 1) the EPA regulatory UAM, and 2) the Fast UAM. The latter version
operates with a larger horizontal grid (10 km instead of 5 km) and a simpliified chemistry solver.
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with lower spatial resolution and simplified chemistry. Each region comes with
suitable emission and meteorological data on-line.

Photochemical ModellArea Selection

Los Angeles

———— — — — — > - S —— ———— —

Figure 3-2
Screen from Which User Chooses the Study Region and the Photochemical Model
for Subsequent Simulations

The user selects the days of simulation and, through a simple graphical interface,
manipulates the emission data by applying different controls (in percentage) to groups
of emissions (e.g., traffic) and/or selected sub-regions.  Through this easy
manipulation of the emission file, the user can run the photochemical model under
different emission scenarios during the selected days. After each selection of
emission controls by the user, the CMSA calculates and provides an estimate of the
associated emission control costs. In other words, the emissions base cases provided
for each region can be altered to create “children” cases, i.e., alternative control
strategies. For each of the three chemical groups: VOCs, NO,, and CO, emissions are
broken up into five classes: mobile, area, low level points, elevated points, and
biogenics. Each of these classes can be altered by moving a slider or entering either a
rate (tons per day), a percent of the base case, or a target control cost. (Note that, in
Prototype #1, emission control costs are calculated for demonstration purposes only,
using a quadratic relationship between emission rates and costs. However, the use
can edit the constants of each quadratic function to adjust the relationship to

Preliminary results (Morris, personal communication) for ozone concentrations on July 8, 1988 for the
New York region indicate that, in comparing the two UAM versions, daily maximum ozone
concentrations are very similar, yet the Fast UAM runs 25 times faster (6.4 minutes versus 162.8
minutes on a 200 MHz SGil indigo’2).
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After setting the model beginning and end date/times the model is started. A progress
bar is displayed to help monitor the run. After each hour of simulated time, a contour
map showing maximum hourly average ozone concentration is updated. The user also
has the option to stop or pause/reactivate the model run at the click of a button. By
entering the analysis portion of the application they can explore the model inputs and
outputs interactively in a 3D environment using slices, isosurfaces, etc. This is
accomplished via a link to a CMS-specific version of the savi3D environmental
visualization package. Model and observational data may be viewed after and during
the model run. Finally, visualization/evaluation routines allow the user to evaluate the
different concentration patterns created by each emission scenario and assess the
cost-effectiveness of each control strategy (e.g., by correlating ozone concentration
reduction with control costs, population density and other geographically-based
parameters).

All the information related to the performed simulations is automatically summarized,
with text and graphics, in a text file.

The prototype is available to others than the CAMRAQ Charter Members on a fee basis
through the CAMRAQ Bulletin Board. The fee includes training sessions to ensure that
users obtain the maximum value from the use of the prototype.

3.4 Prototype #2

In Version 2.0 of the CMS prototype we will build onto the Version 1.0 base by
incorporating more of the infrastructure described in the System Design (Chapters 2, 4,
and 5) portion of this document, and expand the modeling-oriented functionality. This
was anticipated in the design of Prototype #1, as the interface has facilities for the
expansion into other models and model types. The actual screens developed for
Prototype #1 will be retained, for the most par, but the underlying code will be
“serverized”, that is, broken into client and server processes that send requests and
services through an interprocess communications mechanism. This is essential to allow
the application to be distributed across multiple machines, allowing PC-based CMS
users to access functionality that currently has only been implemented on workstation
or “supercomputer’” machines, such as the JEWEL emissions modeling system or
components of the Models-3 project.

The most fundamental addition in Prototype #2 will be the DataBase Management
Server (DBMS). In Prototype #1, all model /O are file based and mode! output
statements are converted to use the MeRAF file format to allow for inter-platform
compatibility and compatibility with the visualization component. Other model /O,
including all data input, retain the original UAM read calls to Fortran binary files. In
Prototype #2 all open/read/write call sequences will be handled by the CMS DBMS via
the DCE/DFS system. Adoption of a single format will go a long way towards
establishing interoperability between models. The specific makeup of the database
server (combination of commercial DBM and CMS specific software) will require further
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design efforts by the development team. We are considering basing the system on a
commercial object-oriented DBMS such as ObjectStore. The detailed schema design
also awaits further design sessions. ARIA Technologies has developed detailed
ObjectStore based schema for meteorological, emissions, and AQ modeling quantities.
(The development team may explore the possibility of collaborating with ARIA on this
issue.)

3.4.1 Model Interchangeability

One of the key elements to the CMS modeling system is the ability to “plug and play”
between different models, that is, to be able to drive different dispersion and chemistry
models with meteorological or emissions data from a variety of models. This is a key to
good science, as different situations may require varying degrees of sophistication in
the different modeling components.

We propose to add support for additional models to Prototype #2 to allow the user to
choose between: two meteorological models, three air quality models, and one
emissions model.

Emissions:
EMS-95: This model is becoming very widely used.

Air Quality:

UAM-IV: This is the most widely used photochemical model. While it is
true the Prototype #1 included UAM-IV, all of its file based /O will
have to be replaced to accommodate “plug and play”.

UAM-V or UAM-X or URM

UAM-V is an SAI proprietary model which is being increasingly used.

UAM-X is under development at Environ, and is expected to be made
publicly available during Summer 1996. It is designed to be UAM-V
compatible. Use of either of these models depends on availability.

URM is from CMU

MONTECARLO or a similar model for high-resolution simulation of
transport, diffusion, and linear chemistry phenomena using
Lagrangian particle modeling techniques.

Meteorological:
DWM: DWM is the simple diagnostic wind field model that is distributed
with UAM-IV. :
CALMET: CALMET is a widely used diagnostic meteorological model
which is considered more sophisticated than DWM. Benefits include
3D interpolation of other meteorological quantities (like temperature)
in addition to the wind fields.

As in Prototype #1, additions to the user interface for setting up the models would be
minimal. The emphasis here is getting the models to work together. Development of
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extensive model set-up GUIs must await Prototype #3, in which the CORBA and Model
Servers components are added. The model user would basically go through the same
steps they use today to set-up a model run. The main difference would be that they will
be using the CMS DBMS to access the required data. It must be kept in mind that the
inclusion of a real emissions model in Prototype #2 will make the system much more
flexible than Prototype #1 for setting up real cases. Tools for importing existing model
datasets into the DBMS will be developed, as will facilities for variable conversion and

grid matching.

The development team will reevaluate the list of models provided above and explicitly
state a priority order for inclusion of meteorological and air quality models in Prototype
#2, with a discussion on advantages and disadvantages of each of the candidate
models in terms of functionality for the user.

3.4.2 Operating Within The Distributed Computing Environment (DCE)

While the major thrust of Prototype #2 will be an application of the model
interchangeability concept, this prototype will extend the systems design to include
execution of at least one of the models on a “remote platform”. This step will introduce
the CMS DCE. The GUI platform will become a DCE client, and at least two other
computing platforms available over a high-speed network will be available for executing
the CMS DCE server. The CMS client will be authorized to access these machines and
the GUI will provide a means of specifying these alternative resources.

3.5 Prototype #3

In Prototype #3 we will add the model servers and the CORBA system. The major
change is that the CMS will have knowledge of each model and be capable of
presenting to the user a GUI for model setup (see Section 5.5). This is a very big step
in the direction of making it easier to create model runs. There will be a registry function
whereby new or legacy codes can be registered into the CMS system. This process
includes the creation of a GUI template that the CMS will use to define the model setup
interface, as well as a catalog of data and computational resource requirements. In
addition, links will be established between the CMS DBMS and a GIS system with
access to geographically registered information and GIS analysis capabilities.

Additional models will be brought into the CMS in this phase: e.g., a prognostic
meteorological model (NCAR/Penn State - MM5 or Colorado State University - RAMS
or University of Oklahoma - ARPS), a non-UAM based photochemical model (SAQM or
URM), and a puff model (CALPUFF, AVACTA II).

Prototype #3 will have a macro capability. This will allow the user to predefine large
sequences of executions typically required to analyze alternative emission control

strategies.
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The effort in Prototype #3 will include Fortran standardization’ and parallelization of
selected legacy codes. (One of the members of our designing team will be starting
soon a contract for parallelizing SAQM on a workstation cluster for the California Air
Resources Board; we expect this activity, and others, to benefit the CMS development
effort too.) Prototype #3 will include a comprehensive set of documents and tutorials

on-line.

Prototype #3 is expected to be close to what in the CP report was called a “basic” CMS
system, i.e., a real product for users. With additional development effort, we expect to
improve Prototype #3 into the first CMS product for general use (i.e., a “basic” CMS).

The issue of the content of future prototypes is discussed further in Section 4, in the
context of a more detailed description of the CMS infrastructure (see Figures 4-3

through 4-5).
3.6 CMS Products

After the development of Prototype #3, we expect real CMS “products” to be provided.
These products will follow the specific design structure presented in Chapters 2, 4, & 5.
We anticipate the development of a “basic” CMS product, to be followed by an
“intermediate” CMS product, and finally a “full” CMS product.

" See Appendix D for an example of how Fortran Coding Standards could be established.
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DETAILED DESIGN

The CMS design is aimed at meeting the requirements defined in Section 2.1.1. In
addition, it must meet other criteria, which are not visible to the user community whose
needs are spelled out in Section 2.1.2. These additional criteria derive from the
performance, efficiency, and security requirements and arise from the desire to use the best
tools for the CMS development, maintenance, and support. The total design must then
encompass and reconcile three principle elements illustrated in Figure 4-1: user
requirements, system operational requirements, and development & maintenance
requirements.

User Requirements

System
Operational Development
Requirements &

Maintenance
Requirements

Figure 4-1
Main Design Elements

The segment of the CMS design represented in Figure 4-1 as system operational
requirements includes such things as system startup, operation, error recording and
recovery, system termination, communications, authentication, data locality, and integrity.
The third component, development and maintenance requirements, includes the methods,
technologies, budgets, and policies which will be used for the CMS. The following sections
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will explore all of these issues and specify their evolution into the detailed design of the
CMS.

In the subsections below, we first discuss two of the elements illustrated in Figure 4-1;
Systems Operational Requirements and Development & Maintenance Requirements. (The
User Requirements were discussed in the CP and summarized in the Preface of this
report.) This is followed by a discussion about our principal design decisions and the CMS
subdivision/decomposition.

4.1  System Operational Requirements

The CMS will possess unique operational requirements which derive from analysis of
the user requirements and the nature of computer systems practices projected for the
next several years. The most visible attributes of system operation include
performance, reliability, and interoperability.

4.1.1 Performance

Given the interest in a broad scale of software destined for industrial, agency, and scientific
use, the choice of a design and a development environment must take into account such
requirements as response time, throughput, memory usage, reliability, security, and
portability across platforms. For example, while some designs may address the flexibility
issue (ideal for proof of concept efforts), attendant lack of speed and/or large memory
requirements may negatively affect the usability of the final system. The final system
should have acceptable (or better) performance on most, if not all, of the dominant
computational environments, or provide means of achieving acceptable performance. The
definitions of the term “acceptable performance”, of course, vary with the user requirements
and operating environment.

4.1.2 Reliability

There are two aspects of reliability which are addressed by the CMS: validity of model
results and the inherent reliability of the system itself. This design addresses the latter
issue while each of the modeling systems will provide mechanisms for assuring the
reliability of their results. The CMS design must deliver services to the users at a time of
their choice and with the services they require for as long as they desire. The hardware
and software combination of the CMS must possess the reliability expected of any of
the commercial software systems of this scale in the computing industry. The system
will utilize alternative computing resources, data storage elements, and software
components as automatically as possible, with minimal user intervention.

4.1.3 Interoperability
Computer-supported solutions for environmental modeling in the industrial context requires

the use and integration of existing internal and vendor-developed tools and libraries which
have been developed using different paradigms (such as structured analysis or object-
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oriented design) or implementation languages. Historically, a significant fraction of the
environmental modeling has been conducted using “legacy” codes, particularly ones that
are standards for permitting and state implemented planning. There are three levels of
interoperability which the CMS will address. At the lowest level, methodologies will be
established to provide for future potential replacement or exchange of fundamental
modules among computational models. At the next level, CMS will provide facilities for
exchange or replacement of any combination of the CMS elements, models, GUI, and
database with a desired alternative. At the highest level, the CMS system itself will
interoperate with other full-scale systems such as Models-3.

4.2 Development and Maintenance Requirements

The success of the CMS will certainly hinge on the user’s perceptions of the system.
However, those aspects of the system which should be invisible to the user will also
play a key role in its long-term future. The design, development and support approach,
and accompanying processes will address the issues of evolutionary design, system
flexibility, legacy code integration, “on-line help”, and system maintainability as
discussed below.

4.2.1 Evolutionary Design

Requirements for systems such as CMS continuously evolve as its development
progresses and more knowledge of the domain and the needs of the workplace are
acquired through the implementation and evaluation of early prototypes. Especially during
the early phases of a project, due to the uncharted nature of the scope of the system, ali
aspects of the system may go through many drastic revisions before its core structure
becomes stable.

4.2.2 System Flexibility

The system will continue to evolve as the available support hardware and software
advance. Thus, the system should be flexible in its ability to integrate new science and its
ability to take advantage of improved computational environments. A key to a successful
CMS design is to provide an ability to readily hook into both legacy codes (see below) and
future codes, and to provide an environment for development of new models.

4.2.3 Legacy Code Integration

The starting point for the CMS will be the incorporation of the existing model codes into
the system. Where possible, this will be accomplished with a minimum of change from
the original codes since it is imperative that the credibility and calibration these codes
possess must be retained and exploited. As part of this incorporation process, the
development team will have to decide the degeee of Fortran Coding Standards that are
required. To this end, we enclose as Appendix D the Fortran Coding Standards
adopted for Models-3. These standards may constitute a basis for similar standards, to
be adopted for the CMS in the future.
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4.2.4 “On-Line Help”

In its full configuration, the CMS will present the user with an extremely robust and
flexible system. To support such a system in everyday use, the CMS will have to
provide an interactive “Help” facility with the features that all PC and Macintosh users
have come to expect from every commercial software package.

4.2.5 System Maintainability

The CMS will utilize a myriad of model, file, and system programs which are written in
an equally varied collection of programming languages. The overall design of the CMS
will utilize the object-oriented design approach and all modules integrated within the
CMS will be placed under a common code control system. All new programs will be
developed with object-oriented tools and wherever possible, existing “legacy” codes will
be furnished with programming interfaces (or wrappers) which will give them the
properties of new system objects. Further, legacy codes may be optimized for use in
the CMS, providing the same results, but with better performance.

4.3 Principal Design Decisions

The boundaries for the design are thus drawn: the user requirements, system
requirements, development requirements, and the hardware and software systems with
which they will operate form the basis for this CMS design. There are several major
decisions made during the formative stages of the design which should be iluminated here.
These are: system partitioning, priorities for design and implementation, and necessary
design compromises.

4.3.1 Partitioning of System Functions

With the complex combination of applications programs, databases, operating system, and
user interfaces in the CMS, it is clear that some form of “modularization” or “partitioning” of
the entire CMS must be the first step in the design. This is even more true when most, if not
all, of these functions may operate asynchronously and, further, may be instantiated on
separate computational platforms. In parallel processing jargon, the phrase “functional
decomposition” is sometimes used to describe the process of dividing applications
computations into two or more somewhat independent modules. In the remainder of this
detailed design discussion, all three descriptive terms will be used (“partition”,
“modularization”, and “decomposition”). The primary criteria used when partitioning is
simple: “What makes sense?”. To better understand the role of partitioning in the design of
the CMS a few questions are presented, and answered, below.

o What elements should be combined together in a single entity? There are
obvious choices implied in this question. It would seem clear that it makes little
sense to combine a module for printing map files with the advection subroutine
from a meteorological model. On the other hand, all functions related to initiating,
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operating, and terminating any set of emissions models would be likely
candidates to end up in the same partition. Thus, the identification of a general
‘emissions’ function springs forth. This process of agglutination could continue to
the point where this emissions function could be incorporated directly into the
GUI or into the overall CMS management function.

It is at this point, where the system architect decides that a further accretion of
functions would make the entity cumbersome and unwieldy from a programming
and system maintenance point of view. So we rest on a stand-alone ‘emissions
function’.

What entities should operate over a system of shared resources and
networks? The zeal to partition functions into small subsystems for ease of
system’s management as well as increasing the opportunities for parallel
operation (and perhaps consequent performance improvements) must be
tempered with the knowledge of the performance and system integrity impacts
for the design. A simple example is where a Fortran application is being divided
into smaller and potentially parallel modules. If a key element of this application is
a large, global, data array which must now be accessed by all modules, the
performance of the program could be seriously affected if the modules are in
separate execution spaces, or worse, on separate machines connected by a
slow network.

To decompose the user interface into different modules such as the GUI, the
graphical rendering system and non-graphical command line functions, each of
which must access and manage aspects of the terminal screen, and are thus
best done within a single functional entity.

What needs to be developed for CMS and what can be obtained from other
sources? The goals of the CMS development effort is to maximize
interoperability between many different platforms and, at the same time, optimize
the design and implementation resources of the CMS development team. The
plan mandates widespread, albeit prudent, use of components provided by
hardware and software vendors, both commercial and public domain. Selection
of major modules in this category will influence the process of defining the CMS
modules. For example, we have chosen the distributed computing environment
(see Section 5.9) as the basic, standard mechanism for distributing and
managing the system functions, even on a single platform. Since the DCE
provides an integral security system, the security function need not appear in the
CMS features which need to be developed.

In a similar fashion, the DFS which accompanies the DCE can supply many
functions that would otherwise have to be developed for the CMS database
scheme. As the reader will note, we have chosen some key elements of the
CMS to be provided by developers other than the CMS team. The DCE, the
database manager, the program object manager, the GIS manager, and the GUI
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are all major modules which will be acquired from these other sources. As it is,
the CMS will have its hands full with the integration and adaptation of these
facilities as well as the creation of the CMS customized functions.

o What are the modern software technology guidelines for partitioning?
Current practices in system development prescribe mechanisms for identifying
the salient characteristics of ‘objects’ and their definition and implementation.
Further, the coordination of several software development groups, each with its
own special backgrounds and experience, will be made much easier if the
appropriate functional decompositions are established. Software development
and testing of a complex system will also require that each of the defined
functional partitions have sufficient stand-alone capability so that it may be
developed relatively independently of other functional components, and
rigorously tested without requiring that other members of the system be present.

It is very helpful to define the general nature of these CMS components and to
specify their relationships to each other. Hence, we introduced (in Section 2.1)
the concept of ‘client’ and ‘server’ functions to describe certain intrinsic behavior
of these components. As mentioned earlier a “client” requests service, while a
“server’ provides the requested service. There is a good deal more technical
substance to these designations than the casual one we just used. For example,
if an element of a system is a “pure” client, it will never provide any kind of
service to any other entity and thus never receive ‘requests’. The client
generates requests and awaits responses from one or more other elements in
the system. The server expects requests and provides responses. If it is a “pure
server’, it will never make requests of any other subsystem, nor does it ever
expect to receive messages of the “response” category.

These definitions assist in both the system design and in maintaining the system stability
and integrity during its operation. Of course, an entity may adopt differing personalities
depending on how the function is being utilized at the moment. In the CMS design, we
describe the user interface as the CMS client and specify that it be a “pure” client. This
means that if the function is being executed at a personal PC or workstation, the user may
issue requests to the CMS through the CMS client but none of the resources of the
personal workstation would be accessible to the CMS or its other users. In the case of the
CMS management server, it will respond to requests from the CMS client but may also
become a client to one of the other servers, such as the database server. This is possible
only if the management server can “trust’ the other servers, and vice-versa; a situation
which must be ensured by the CMS security system.

4.3.2 Priorities for Design and Implementation
This document represents a “first level” of detailed design of the CMS. Our realistic
assessment of available funds and key resources (and common sense) contributed to

our decision of developing the CMS as a series of evolving prototypes. The approaches
of prototyping and evolutionary development have been discussed earlier and
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permeate every aspect of this document. Our Prototype #1 has been relatively easy to
specify since it limited itself to existing models which will constitute subelements of the
CMS. The next phase of this project will have to address the actual priorities of work
for the detailed design and implementation. The descriptions of the prototypes and the
amount of detail in the following design specifications reflect our recommended
sequence for the development.

4.3.3 Necessary Design Compromises

In the best of all possible worlds, “legacy codes” would only be present in early
implementations of the CMS. It is clear that some of these codes will continue to be
key operational components of the CMS. All aspects of the CMS must then present as
facile an interface for these legacy codes as it will for a new generation of codes. This
means that there will be some compromises made in the programming interfaces, but
not the performance or reliability of any of the components.

A more subtle but essential set of compromises made in this design are those involving
the use of as many existing elements as possible to reduce the development time and
cost for the CMS. While those described here are acknowledged to be at the edge of
the computing state-of-the-art, they present established interfaces and functionality
which might be accomplished more efficiently or elegantly in a fully-customized CMS
design. The design in this document attempts to minimize these compromises, but they
will be apparent to a knowledgeable software engineer who can envision an “idealized”
CMS.

- 44 The CMS Subdivision/Decomposition

Figure 4-2 provides a diagram of the major CMS elements as they will appear in the
remainder of this design document. This block diagram forms the basis for subsection
headings in Chapter 5. An identifier ([1] -> [11]) has been assigned for use in later
discussions. A heading of “CMS” indicates that the particular module will be designed and
implemented by the CMS team. The heading “DCE” indicates that the module will come
from the standard distribution of the distributed computing environment. A heading of
“CORBA’ indicates a module provided by the Object Management Group (OMG) of the
Open Systems Foundation.
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Figure 4-2

Major CMS Elements

The relationships between the modules involves one or more communications paths
between modules which would clutter up the figure intolerably. We have chosen to describe
these relationships in Table 4-1, using the module identifiers “1” through “11”. Abbreviated
notes have been placed in many of the table entries to indicate significant design issues for
intercommunications. In each cell of the table a two character field surrounded by brackets
indicates the communications path. For example, “[1-2]” identifies a communications from
Element #1 (the CMS client) to Element #2 (the CMS management server). The
communications “pairs” from this table will appear in each of the subsections of Section 5
where appropriate.
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Table 4-1
System Communications Table
to/ client manager | database DFS model CORBA | modeis DCE batch decision reai-time
from 1 2] [3] [4] servers [6] 7 8] [E)] [10] [11]
[5]
client [1-2] [1-3] [1-4] [1-5] [1-6] [1-7] [1-8] [1-9] [1-10] [1-11]
[ all specify data setup model runsync | login, find queue setup initialise
resource extract params elect CMS jobs params
requests dispose
manager [2-1] [2-3] [2-4] [2-5] [2-6] [2-7] [2-8] [2-9] [2-12] [2-11]
[2] per- startup open startup startup locate startup startup startup
missions shutdwn system shutdwn | shutdwn resource shutdwn shutdwn shutdwn
files permit
database [3-1] [3-2] - [3-4] [3-5] [3-6] [3-7] [3-8] [3-9] [3-10] [3-11]
[3] data errors files data extant #Hit# extract RPC to ##H# data it
subsets structs data DFS extracts
DFS [4-1} [4-2] [4-3) [4-5] [4-6] [4-7] [4-8] [4-9] [4-10] [4-11]
[4] data errors data data objects data DCE #iH# data #ith
internal
model [5-1] 5-2] [5-3] [5-4] [5-6] [5-7] [5-8] [5-91 [5-10] [5-11]
servers data errors i files data objects setup locate #i# #iH# #HHE
[5] sync xforms DFS
permit
CORBA [6-1] [6-2] [6-3] [6-4] [6-5] [6-7] [6-8] [6-9] [6-10] [6-11]
[6] errors errros #it# request setup H### locate #itH ### #it#
objects AP| DFS
permit
models [7-1] [7-2] [7-3] [7-4] [7-5] [7-6] [7-8] [7-9] [7-10] [7-11]
[71 errors errors requests requests status #iH #it# status H#H#H# sync
data data data requests
DCE [8-1] [8-2] [8-3] [8-4] [8-5] [8-6] [8-7] - [8-9] {8-10) [8-11]
[8] time time time time time time time time time time
location location location location location location location location location location
permit permit permit permit permit permit permit permit permit permit
batch [9-1] [9-2] [9-3] [9-4] [9-5} [9-6] [9-7] [9-8] - [9-10] [9-11]
[9] status errors requests requests H#i# it startup locate setup run H#it#
setup data shutdwn DFS
permit
decision [10-1] [10-2] [10-3] [10-4] [10-5} [10-6] {10-7] [10-8] [10-9] - [10-11}
{10} data errors requests requests H##H# fii2 3 run locate H#iH #itH
data data decison resource
models permit
real-time [11-1] [11-2] [11-3] [11-4] [11-5} [11-6] [11-7] [11-8] [11-9] [11-10]
M1 data errors data data status it sync locate i #iH
status data data DFs
permit

- Note: “##4#” indicates no communications; “---” indicates not necessary
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The reader may be quite confused when faced with the diagram in Figure 4-2 and Table
4-1. “Does the CMS system have to be this complicated?” one might ask. To put things into
the right perspective, three considerations should be made.

1. Table 4-1 is included as a basis for future design discussions and exposes many
low-level interfaces.

2. The simplest use of the system (with models, visualization, and control, self-
contained on a single workstation) does not require more than three
components.

3. In a fully-configured, multi-user, multi-site CMS, some aspect of each of the
modules shown must be present.

The clear amelioration for the apparent complexity and depth of the CMS is that the bulk of
the system consists of software and concepts which have already been developed and
tested. The task of the CMS development team is to assemble these components and
configure them into an integral scheme which can operate efficiently on small modeling
problems on single platforms as well as very complex modeling problems on multiple
computing platforms.

Figures 4-3, 4-4, and 4-5 show the elements of the system which will be exercised during
the Prototype #1, #2, and #3 phases of this project.

The following chapter presents a detailed breakdown of each element of the CMS. Each of
the aspects of the design which must be dealt with before commencing implementation are
given a separate subsection. While not all of the subsections in Chapter 5 are addressed in
the same level of detail, the subsections remain as “placeholders” to be filled in during the
next phase of the program, i.e., Phase Il - The Development Phase.

[1] CMs - ’@
CLIENT T3] OMS
Database
erver

7

models

Figure 4-3
Prototype #1 Elements
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5

MAJOR CMS ELEMENTS

This chapter expands the discussion of the eleven CMS elements illustrated in Figure
4-2 and their interactions summarized in Table 4-1. These elements are:

The CMS client

The CMS management server
The CMS database server

The distributed file system (DFS)
The CMS model server

The CMS program/object server
The CMS models

The distributed computing environment (DCE)
The CMS batch server

The CMS decision server

The CMS real-time server

RPN AWM A

-tk

All elements are discussed below. Discussion generally includes a description of 1 )
element components, 2) communications (internal, to CMS manager, to database
server, to the DFS, to the CORBA, to the model server, to the models, to the DCE, to
the batch server, to the decision server, to the real-time server, and responses to
requests), 3) concurrency, 4) performance, 5) error handling, 6) implementation, and 7)
operation.

5.1 The CMS Client

The CMS user interface, which we shall call the CMS client function, is shown in Figure 5-1.
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CMS System
Iinterface

3D

Visualization

Figure 5-1
The CMS Client [1]

5.1.1 CMS Client Components

There are three separate components in the CMS client. They are: 1) a standard GUI, 2)a
3D visualization system; and 3) the interface module between the client and the remainder
of the system. The CMS client provides an integrated 3D graphical environment for the
analysis and synthesis of all relevant spatially referenced data, including input or set-up
data and model outputs. This includes meteorological, emissions, air quality, topographical,
land use, engineering, landscape, and architectural data. The ability to explore multiple
datasets simultaneously in a highly-interactive environment is crucial in identifying their
mutual relationships and in weeding out inconsistent or implausible data. Users will be able
to set a flag identifying such data as bad from within this graphical environment.

5.1.1.1 The GUL An important principle of the CMS is that the user will encounter a
“common look and feel” in the user interface. This “common look and feel” is intended to
bridge all of the hardware and software platforms and all of the modeling systems within the
CMS. The GUI uses a “standard” system for presenting menus, tables, dials, entry boxes,
etc., to the user. This appearance and the response of this interface will be virtually identical
on PCs, Macintoshes, and Unix workstations. While each model setup, execution, and
analysis will differ in many ways, those components which share commonality (for example,
setting windfield velocities) will have similar, if not exactly identical appearances.

Many tools for building, modifying, and updating these GUlIs are available for multi-platform
implementations. The CMS GUI will be built upon these tools. The GUI for the CMS
Prototype #1 is being built using the Intersolv Corporations C++/Views. (Other systems
available are: Z-App from Inmark, Open Software’s OpenUl, XVT from XVT Software, Open



Major CMS Elements

Incorporated’s Aspect, Neuron Data’s Open Interface. The usage of all of these “GUI
builders” is very similar.)

The use of a ‘platform neutral’ GUI builder makes it possible for users to tinker with the “look
and feel” of their interface very quickly and have that interface appear almost automatically
on all of the other CMS client platforms. Each CMS user community may then tailor the
interface according to their needs and working styles, and not be forced to deal with an
unfamiliar or uncomfortable scheme which sounded good during the initial project stages.

The appearance and “feel” (which is how menus and buttons respond visually and
physically to user manipulations) couples with the “semantics” of the interface. The
“semantics” are those actions which the CMS client, and the remainder of the system,
undertake as a response to the user. The GUI builders listed above all base their
‘'semantics’ on the use of C++ objects. Since C++ objects will be the basic building blocks
for CMS implementation (Fortran is used for most of the scientific models), ‘semantics’ of
CMS activities will be described in C++ objects and methods.

5.1.1.2 The 3D visualization. The basic component of the CMS client for the visualization
of data is the OpenGL system which originated at SGI and has become an industry-wide
standard, supported by hardware vendors and commercial software development groups.
(While OpenGL. is not available for DOS and Windows 3.1.1, it is available for OS/2 and
Windows NT, and soon for Windows 95 and Macintosh.) OpenGL provides for the 3D
transformations and rendering of objects. (Two dimensional displays are a simple subset of
the 3D.) The OpenGL system provides reasonable graphics performance even with the
simplest graphics hardware available. This is particularly true of the OS/2 version of
OpenGL. Thus, CMS has available a very powerful and “platform-neutral” tool for displaying
its data, on PCs or high-end graphics workstations.

The graphics visualization system interacts with the GUI to select, orient, and interpret the
data being displayed. In addition, it can create requests to the database for information to
be loaded for a requested display field.

5.1.1.3 The CMS interface. The CMS client accesses other CMS functions (such as the
database manager) through a set of programming protocols defined by the CMS
infrastructure. For multi-platform instances these protocols use the DCE described in
Section 5.8. This module of the CMS client is, in fact, made up largely of the DCE client
functions.

The best way to illustrate this concept is to describe what happens when a user accesses
the CMS. Let us assume that the point at which the user interfaces with the CMS is a PC or
Unix workstation.

- The user first logs into the workstation by giving a unique name and password.
This process may be skipped when using a personally owned PC, but good
system practice mandates even login procedures for this level of machine. The
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user may choose to perform a number of non-CMS operations, which will not
invoke the CMS interface.

. When access to the CMS is desired, a separate login/authentication operation
must take place to validate the user’s ability to use any or all of the CMS.
Triggered by a user command, the DCE client portion of the CMS interface
contacts the DCE server and conducts the necessary system handshaking and
‘caches’ authentication for future use. The DCE server notifies all of the CMS
servers that this particular user is active and specifies what services they may
access and with what permissions.

- After the client is validated, the next step for the CMS interface is to locate and
contact the CMS management server to register itself with the manager which
initiates a variety of procedures, including monitoring of the client and initiating a
log for the client session.

- Other aspects of the DCE client do not appear as actual functional modules in
the CMS interface. Instead they involve the DCE mechanisms for using RPC in
place of the standard Fortran, C, and C++ subroutines and function calls. This is
described in Section 5.8.

- The CMS interface function also registers all inter-system resource usage with
the CMS management server so that is can deal with error conditions and
negotiate resource allocations when there are conflicting requirements among
the members of the system.

5.1.2 Communications

The CMS client can communicate with every other member of the system. Table 4-1
contains an entry for communications to every destination. While the client must seek
authentication from the DCE to access a resource and must register this service connection
with the CMS management server for the first communication, all subsequent
communications take place directly between the client and the target resource.

In general, communications cover 12 types of actions.

Internal communications

Communications to the CMS manager
Communications to the CMS database server
Communications to the DFS

Comunications to the CORBA
Communications to the model servers
Communications to the models
Communications to the DCE
Communications to the batch process server
Communications to the decision server
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11. Communications to the real-time server
12.  Responses to requests from the CMS clients and servers

These actions are discussed below.

* Internal communications. The GUI, the 3D visualization process, and the
CMS interface all operate as independent processes on the CMS client host.
Coordination among these three elements is through messages between
cooperating pairs of these functions. The implementation will avoid using
other coordination techniques, such as shared memory variables, so that the
functions could be distributed to separate processors in the future if new
hardware or system developments make such a step possible and desirable.

e Communications to the CMS manager. The CMS client initiates
communications with the CMS manager for the following functions.

Initial registration as a CMS client

Initial request to access a CMS resource

Notification to free up resources

Reporting errors detected by the client

o Communications to the CMS database server. The CMS client initiates
communications with the CMS database server for the following functions.

- Requests for GIS and map data.

- Requests for access and location of datasets. The client will usually be
unaware of the organization and whereabouts of physical files which make
up a dataset. Where access controls are required on certain files and
datasets, the database manager will provide the requisite permissions.

- Requests for subsets of data. Where subsets such as “slices” from a
gridded dataset or portions of discrete datasets are required, they are
requested from the database server which performs the necessary
operations on the files themselves and returns the data to the client.

- Requests to dispose of datasets by copying, removing, and/or creating one
or more physical files.
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e Communications to the DFS.
- Requests to retrieve data files.
- Requests to store data files.

e Communications to the CORBA. Selection information for the models being
setup and executed.

e Communications to the model servers.
- Parameters for the models.
e Communications to the models.

. Parameters

Start/run

Pause

Synchronize
e Communications to the DCE.
- System login
- System logout
- Request to locate a resource
e Communication to the batch process server.
- Job setup information
- Job queuing information
- Job queue changes
e Communiction to the decision server.

- Setup information for the decision models.
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e Communication to the real-time server.
- Send initialization parameters.

e Responses to requests from the CMS clients and servers.

5.1.3 Concurrency

The CMS client operates asynchronously and concurrently with all of the CMS servers it is
employing.

5.1.4 Performance

The host machine for the CMS client must be able to deal with keyboard, mouse/pointer,
and other input devices and display the effects on a color graphics screen with sufficient
speed as gives the user a distinct interactive feeling. Modern PCs running at 100 MHz or
better, Apple machines utilizing the PowerPC chip, or any modern Unix workstation easily
fill this requirement. If other elements of the CMS such as the database server or the
models themselves are to run on this same platform, they will be sharing the computing
power of these machines and may adversely impact the interactive aspects for the client.
Performance requirements of these other elements are discussed in their respective

sections.

The ability for a moderately priced PC-based system (i.e., a Pentium CPU running at 120
MHz) to perform model computations and database extraction, as well as the GUI and

display functions, is being demonstrated in Prototype #1.

5.1.5 Error Handling

The CMS client will attempt to handle error conditions according to the standards expected
of all modern commercial software products, without relying on user input. There are two
sets of errors sources which must be dealt with, those internal to the CMS Client itself and
those arising from the external servers. Wherever possible, the GUI will be used to report
errors to the user and request guidance on how to proceed.

o Internal errors. The types of internal errors which the CMS client will have to
manage Wwill be those arising from the host machine and its software and those
stemming from errors coupled to the CMS client software system. Errors which
impact the CMS will be reported to the CMS management server.

Fatal errors, of course will most likely be dealt with by the platform system,
resulting in termination of the CMS client program. When this doesn’t occur, the
client will attempt to retain at least the GUI so that, if needed, termination
procedures may be under the control of the user.

5-7
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5.1.6 Implementation

The CMS client will be implemented with C++ tools and C++ objects. Newly developed
code for the CMS will meet project specifications for programming and documentation.

5.1.7 Operation

A typical CMS operational day may find many clients logged in and accessing one or more
CMS server functions. Each of these clients may have several activities in progress on their
workstation which may give rise to a multiplicity of processes throughout the CMS on behalf
of a single client. When several clients are competing for the use of the resource, it is the
responsibility of that resource manager (for instance, the database manager) to establish
priorities for service with the help of the CMS management server and, possibly, interaction
with the clients involved.

5.2 The CMS Management Server
Figure 5-2 presents a block diagram of the CMS management server. Its principle functions

are logging, error control, startup and shutdown, and management of all of the CMS
resources.

Logging
Error Control

Startup, Shutdown

Figure 5-2
The CMS Management Server [2]

5.2.1 Components

The CMS management server is the first element of the CMS to be instantiated. It contains
methods to manage its own processes and to provide four major functions to the system at
large. These functions are logging, error control, startup/shutdown, and remote
management, as discussed below.

5.2.1.1 Logging. All CMS servers and clients and all newly developed CMS models will
contact the CMS management server when starting up and terminating or when an error is
encountered. This information is logged by the management server for post-mortem
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analysis, system reporting, and, where appropriate, accounting processes. For this reason,
the events being logged will contain more than time stamps. Data such as resource
utilization by the server, message traffic, etc., will be included.

5.2.1.2 Error control. The CMS manager is responsible for tracking all errors detected
within the CMS. All servers and clients will report errors. If the problem cannot be resolved
by the individual client or server and has not caused the termination of the affected server,
the CMS manager will attempt to resolve the problem in a system-wide way. For example,
one of the file systems could experience a fatal error but that server may still be able to
contact the CMS manager, the manager will attempt to restart the server, if necessary. If
the file system could not be restarted, the CMS manager would contact all clients and
servers which it has recorded as currently requiring that resource as to the problem. If an
alternate strategy is available to replace that resource (as in a backup file system), the CMS
manager will bring that resource on-line and notify all active clients and servers of the
change.

5.2.1.3 Startup/shutdown. The CMS manager is responsible for the initiation and
termination of all servers in the system. Normally there will only be a single instance of CMS
servers in a system. However, when a CMS consists of more than one geographical site,
there could be several instances of a server of the same type active at one time. The CMS
manager ensures that sufficient services are available to complete CMS user tasks.

At the outset, the only CMS servers which must be active are the DCE server and the CMS
manager. As resources are required for the first time, the manager will start their respective
servers on the requisite hosts. Once started, a server will persist in operation until
terminated by the CMS manager.

When a server must be shutdown, other than because of a catastrophic situation (crash) of
the server's host, the CMS manager is contacted and a request for a shutdown is made.
This permits the CMS manager to contact any other affected resources before terminating
the requester. The manager may choose to shutdown a server for a number of system
reasons unrelated to errors. It may decide, for example that a particular server has been
unused for a specified length of time and can be terminated until a later request.

5.2.1.4 Resource management. As we described eariler, the CMS management server
maintains cognizance over all active elements of the CMS. The information which is part of
this management chore includes details about the resources available to each active
element. In addition, the CMS manager is also aware of the resources required by each
member of the system. Some of this information is static and built into the management
task (the database server must have at least one DFS facility available to it). Many other
requirements are dynamic and derived from the client or server when it registers a request
for a resource. These can range from very obvious items, such as the amount of file space
predicted for the results of a model run, to the more subtle properties of a server requiring a
high-bandwidth connection to its database, if high-execution performance is desired.



Major CMS Elements

When clients and servers make requests for resources, the CMS manager will determine
the most appropriate location from which to access that capability. An examplie of this would
be the decision as to what platform to use for a particular model run, depending on the
model’s needs for computational performance and the locality of the source and result data
files within the system. When several CMS elements are competing for the same, singular
resource, the CMS manager must arbitrate the contest and allocate critical elements

depending on a CMS team established policy.

5.2.2 Communications

The CMS management server communicates with all other CMS components except for
the models, as shown in Table 4-1. These communications are demonstrated below (note

that communications to the models are not applicable).

5-10

Communications to the client.

- Shutdown command: The manager can shutdown CMS clients when dire
circumstances arise. No client or server can unilaterally terminate itself
without first contacting the management server.

- Status request: The manager may inquire of the client as to its resources
and the status of its resources.

- Permissions: The CMS manager may have to change the resources and
permissions for CMS access dynamically during a CMS client session. It is
possible to conceive of situations where a client may be pre-empted in its
use of CMS facilities at which point the user must be informed through the
GUL

Communication to the CMS database manager. Startup/shutdown.

Communication to the DFS. Open the CMS system files: Files needed for
CMS management will be local to the host running the management server.
All system critical files will need to have backup images which are not stored
locally and would need to be accessed by another host running a ‘backup’
manager in the event of a major failure of the manager host system. These
system files will be maintained by the DFS.

Communication to the CORBA. Startup/shutdown.

Communication to the model servers. Startup/shutdown.
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e Communications to the DCE.

- Permission request: Although the manager is responsible for all CMS
activities the primary mechanism for authentication and location of the CMS
elements rests within the DCE.

- Locate resources
e Communications to the CMS batch server. Startup/shutdown.
e Communications to the CMS decision server. Startup/shutdown.
e Communications to the CMS real-time server. Startup/shutdown.
e Response to requests from CMS clients and servers.

5.2.3 Concurrency

The CMS management server operates asynchronously and in parallel with all of the CMS
clients and servers. Since the manager is the cornerstone and possible bottleneck for the
system, its behavior must at the same time be very deterministic and stable as well as
responsive to a variety of asynchronous requests. At this juncture, a multi-threaded design
appears to be the best means for achieving these goals. This aspect of the system needs
further consideration.

5.2.4 Performance

The performance of the CMS manager hardware and software system must be sufficient to
ensure that it never becomes a bottleneck to any constituent of the CMS, except where
system integrity considerations causes the manager to slow down or terminate operations.
The tasks assigned to the management server are reasonably self-contained, simple, and
should require modest amounts of machine resources even under heavy request loads.
High-performance PC or PC-based system servers as well as modern Unix workstations
are more than adequate for this function.

5.2.5 Error Handling

Section 5.2.1.2 describes the role of the CMS management server in handling errors for the
entire CMS. This description includes the methodologies for internal CMS management
server errors as well. .

5.2.6 Implementation

The CMS management server will be developed from scratch. The development
environment will be C++.
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5.3 The CMS Database Server

Figure 5-3 depicts the CMS database server and its primary relationships to other CMS
elements.
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Figure 5-3
The CMS Database Server [3]

5.3.1 Components

The database server has one of the most complex jobs in the CMS. The CMS
development of the database server will consist of creating an integrated design of existing
software systems and establishing the interfaces to other CMS servers. . New software
development by the CMS development team would be limited to the location/allocation
mechanism described below, while the other elements (GIS, data extraction and insertion,
conversion, and transformation) will be extracted from software developed elsewhere.

5.3.1.1 Location/allocation. In the past, environmental modelers have had to deal with a
variety of naming conventions for their data files. Usually these were limited by a specific
operating system limitation. We have all had to deal with PC file names like TFDGF.FIL
which is further qualified by the disk partition on which it resides: “D:\TFDGF.FIL” and even
further by the subdirectory in which the file actually appears: “D:\MODELA\TFDGF.FIL”.
This scheme ends up encoding into the file name its actual location. Instead, a CMS user
filename should only be required to convey the contents of the file and its relationship to the
CMS. “The_First_Data_Grid_File” might look strange and inappropriate but it expresses
how the CMS user should be able to deal with system-wide data.
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The DFS provides the capability for unique, location-independent file naming. However,
system conventions for the base hosts may require fragmentation of the naming system. in
addition, many logically-associated datasets may be aggregated for one or more uses. This
means that the output of a meteorological model and an emissions model for a particular
event under study could consist of three, four, or more distinct files. The user must be
aware of these separate entities and address each from their setup systems and models.

As an example, some large meteorological runs require more storage space for their output
than can be accommodated in a single disk file allocation. It is not unusual to find output
files scattered about various file systems and even various host machines. One might see
time steps one through ten in a file called “hosta/home/useri/houri_10” and the next set of
timesteps in file “hostb/home/useri/hourt1_20". Further, many modern meteorological
models produce more than just a set of files containing fields which may be contained in
separate files. Some files contain time-varying values for each grid point; others might be
time-invariant or might represent domain subsections only.
LY

In the CMS, these files will not only be referenced at the time models are run or results
analyzed. Many other activities will deal with filesets and files in the CMS. Moving, copying,
and deleting filesets should require that the user only be aware of and need to use a single
fileset name.

The mapping of fileset names to the family of actual file names will be performed by the
CMS database server for all CMS files. When a new fileset is being created, the database
server must be able to discern the structure of the fileset without prompting the user. For
example, if one chooses to use a particular mesoscale meteorological model, the
meteorological server will provide information to the CMS client about the requisite input
and output datasets. The database manager may then allocate space for the output files
and return the internal DFS names to the client/models.

5.3.1.2 Geographical information system. The CMS will require an array of data to
support the model setup, execution, and analysis. A large amount of this information will
have a geographical basis. Maps, inventories, population, and business locations form a
large but diffuse set of data which must be organized in unique ways for different types and
sets of CMS applications. There are several candidate GIS available which provide the
functionality and can operate on different computing platforms. These include ARC/INFO
and ATLAS/GIS, among others. The selection of a GIS will be made during the next phase
of this project. Principle criteria for choosing a GIS wiil be system reliability, ease of use,
cost, performance, and the availability of multi-platform implementations.

5.3.1.3 Data extraction and insertion. Quite often, modeling and analysis processes
require only a portion of a database on file within the CMS. Typical examples are when only
one hour's or one day's worth of data is needed from the output of an emissions or
meteorological run; or when an analysis or visualization of one or more slices of a grid will
suffice. Past practices have usually required the fragmentation of the datasets into smalier,
separate files. This is particularly true when the data must be transferred over low or

moderate speed networks.
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Oftentimes, an entire large file is transferred from site to site so that a model or analysis
program on the target machine can extract the necessary data. A better solution would be
to perform the extraction process at the location of the data file and transmit only the
subset. It would be desirable that this process be “transparent” to the user at the CMS
client. The database server will make these determinations, on the basis of “high-level
requests” from the user, and perform the operations of extraction (and insertion) of data
subsets from (and into) the relevant CMS files. As an example, the user's model setup
process on the CMS client might indicate that this particular execution will require
meteorological data for a period of 120 hours, in one hour steps, beginning on a specific
day and time, from a particular run of a mesoscale model. The user GU! interaction would
provide an unambiguous dataset name (like: “RPS-1.0_run#21_jan26-jan30”). The
database server would first locate the dataset as described in Section 5.3.1.1.

Then the database server would determine the following factors:

- if the datasets will be local to the computing nodes (locale for model runs will
have been previously negotiated between the CMS client and the CMS
management server),

- if they will not be local should the dataset be moved or copied to another site,
and

- if the dataset can and should be segmented into subsets for this particular run.

The database server sets up links to this database which will be used by the models,
clients, and other servers during the user’s session. During that session, /O references will
be redirected to the appropriate database interface to access the data. The major
implementation effort for these functions will rely on the facilities of the DFS core server
furnished as part of the DCE.

5.3.1.4 Conversion. Since the CMS will integrate a large number of existing (“legacy”)
programs for models and ancillary programs, it is clear that many of the programs will be
“non-conformal’. That is, the data output from one module will not conform to the input
specifications of another. A simple case might be where one module produces its results in
64-bit floating point format while a possible user function expects the file to be in 32-bit
single precision, floating point form. (The very common conversions of formats amongst
Cray or VAX or Intel or IEEE Standard will be automatic, invisible, and performed at a level
below the CMS design.) Several options are available to the system.
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- Convert the entire file from 64 bit to 32-bit floating point prior to executing the
receiving module(s).

- Convert the data as it is input to the receiving module(s).

- Establish a standard whereby all stored data is in a single, common format and
provide conversions during writing and reading of files.

This latter option has an intrinsic charm, since all stored data would be in a canonical form.
Unfortunately, this would require using the largest storage mode used by every function and
would consume unacceptable amounts of data storage and impose unnecessary
conversion penalties on many programs. The best solution for all future CMS modules
would be to have all stored data be in “self describing” form and all I/O routines in the new
programs would recognize these descriptions and perform conversions when necessary.

5.3.1.5 Transformation. When integrating different models, a major complication arises
when the datasets are “non-conformal”. This happens, for example, when the grid topology
and resolution needed by one model for input do not match the structure in the ouput file
produced by the model providing this data. While this situation exists for many of the
“legacy” models, it will necessarily arise even in newly developed models. The database
server will maintain information about these data “form factors” and provide facilities for
transformation of the data from one schema to another, either during actual model input/
output or by creating a new form of the database in the transformed state.

5.3.2 Communications

The CMS database server initiates communications with the CMS clients and other servers,
as shown in Table 4-1. The communication are summarized below. (Note that
communications to the CORBA, the batch server, and real-time server are not applicable.)

e Communication to the clients. Transmit GIS data and extracted, converted, or
transformed data.

» Communications to the CMS management server. Report errors.
e Internal.
e Communications to the DFS.

- Full data files

- Data subsets

- Requests for data and subsets
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e Communictaions to the model servers. Requests for data extents,
boundaries, and formats.

e Communications to the models.
- GIS data
- Transformed, converted data, and data subsets

e Communications to the DCE. Requests for locale and access of the various
DFS.

e« Communications to the decision server.
- GIS data
- Transformed, converted, and subsets of data
e Response to requests from CMS clients and servers.
5.3.3 Concurrency

The database server must be able to provide ail of its functionality to a number of
asynchronously operating clients and servers. There can be several instances of the
transformation function in operation, for example, in support of a single client.

5.3.4 Performance

More than any other server, the database functions can easily become a bottleneck for the
system, unless there is sufficient computer power and data bandwidth present in the host
computers.

5.3.5 Operation

Given the envisioned design of the system — a data-centered system — the database server
is critical for acceptable performance. In this case, the database server would consist of
both the necessary hardware and software to provide the data accessibility and flow
necessary to support the CMS. An important part of the database server is the GIS
component which provides the user with the ability to relate the predicted meteorological,
emissions, and air quality fields to geography, county and city boundaries, highways,
population, topography, land use, and so on. All required inputs for the various models
(including topography, soil type, geopolitical boundaries, land use, vegetative cover, and
soil moisture) will be accessible from the database server at the highest potential resolution.

The user will be able to take a vertical profile at any point in the modeling domain and time
and know the soil type, vegetation, soil moisture, elevation, county, nearest town, latitude,
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longitude, solar elevation angle, soil temperature profile, meteorological profile from the
surface to the tropopause, and similar profiles for relevant air quality parameters. The GIS
component is tightly integrated with the database server to provide this functionality
throughout the system.

5.4 The DCE Distributed File System (DFS)

Figure 5-4 displays the major components of the DFS which uses DCE services to provide
interfaces to the remainder of the CMS. The DFS is based on the Andrew File System
which was developed at Carnegie Mellon University. While the DFS itself is not being
designed by the CMS team, it is a fairly new concept and fundamental to the CMS
infrastructure. For this reason, the DFS will be described here in some detail and in the
same format as the remainder of the CMS design.
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Figure 5-4
The DCE Distributed File System (DFS)

5.4.1 Components

The DFS actually resides in each element of the CMS, unlike the depiction in all of the
figures in this design document. There are one or more DFS servers in any system.
Any host which needs access to files managed by the DFS will have a small client
function operating in conjunction with the operating system’s input-output (I/0)
functions. Unlike all of the other DCE and CMS elements, this DFS 1/O function (the
“cache manager”) has to be installed within the operating system, instead of operating
as a ‘layer’ on top of the operating system.

We discuss below the three components of the DFS: filesets, cache manager, and the
basic overseer.

5.4.1.1 Filesets. From the users perspective, the DFS offers flexible file naming
conventions for all their files and eliminates the need for location information that is
commonly encountered in Unix and PC-based systems. For example, the user may have a
file containing the input fields for a dispersion model which they have chosen to name
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“Dispersion__Data_1-13-95". Even though this file might be unique in the system or for this
user, the user usually must provide a “full path name” which includes additional information
about the file’s locale. On a PC this might become:

d:\userhome\application\ Dispersion__Data_1-13-95
and similarly on a Unix system it might be:
Juser/username/home/application/Dispersion__Data_1 -13-95

In a system based on DFS, the name “Dispersion__Data_1-13-95" would be sufficient to
identify the file. The DFS would take care of determining the actual location and
establishing the necessary operating system links to those files on the requesting host
systems.

In a non-CMS environment, the term “fileset” is used to describe the entities which the user
needs to access, since in many cases more than one actual system file may makeup the
requested item. This is particularly true for large, complex modeling systems where the
input and/or output data may be larger than any single physical space may provide. In
these situations, the user would have to subdivide the data because of system constraints
and not for reasons related to the needs of the models or the science. In a DFS
environment, the user is not constrained by such artificial boundaries and may consider
model setup and execution independent of the physical subdivision of their data. A DFS
server provides three main functions for filesets: management, location, and replication as
further discussed below.

e Manager. The management function is principally concerned with the integrity of
all files under its control and the efficiency of storage and access. One of the
major achievements of DFS has been its “coherency”, unlike other systems,
such as NFS. Model developers on Unix systems have had to cope with the
problem that NFS file data being read by one process may not reflect the latest
data actually written by another process. This lack of coherency has led to some
remarkable chaos when running a sequence of models simultaneously. The
DFS manages operations on all of its files through a mechanism which utilizes
process-to-process and host-to-host “handshaking” using a software device
called “tokens”.

In Figure 5-5, Process B is writing data to a fileset which is being read
synchronously by Process A. In typical Unix systems, the user performs a write
operation which moves data from the user space to a Fortran /O buffer. The
Fortran 1/O routines will make system calls to write this data to disk at times
which may be asynchronous with the user I/O calls. Of course, the system does
not immediately write this data to the physical media. Instead the data is further
buffered in the memory of the host computer until some operating system
criterion is met: whereupon it is actually sent to the disk file. On NFS systems
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where the disk is on a remote machine, the data are again buffered by that host
before actually being written to magnetic storage.

Figure 5-5
Use of “Tokens”

In this example, if Process A attempts to read “the latest” data which has been
written by Process B, the information delivered could reflect an older record/time
step, or even invalid data. The DFS server, on the other hand, uses a set of
tokens and protocols to keep the data for both processes synchronized. When
data is moved to the system buffer (or cache) by Processor B, a token
interchange occurs between that host and the DFS server even though the
actual data may not yet have been transferred to the file systems. When Process
A attempts to read that record/time step, the system first looks in the buffers/
caches of that host to see if the data is already there. If not, a request token is
sent to the DFS server which may discover that the data has been “written” by
Process B, but not yet delivered to the actual files. The DFS manager will then
contact Process B and “demand” that the data be flushed to the file system and
will not send the appropriate record/time step token to Process A until the data is
ready.

The “tokens” referred to here are packets of information which include a globally-
unique user id (in contrast to the user id for a single host or group of hosts) and
time information. These tokens can then also be used to provide authentication
credentials for accessing the data, when DCE/DFS security is enabled.

Locator. In the filesets section, we discussed the concept of “global” or “location
independent” file names. Obviously, some agent in the DFS must be able to
relate these filenames to the actual file or files they reference. The locator
function provides this facility and returns to the DFS client sufficient information
to provide linkage to the requested data for all subsequent accesses.
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e Replicator. The DFS manages its files with internal information which is
considerably more robust than Unix or PC file systems. A feature of this
mechanism is the ability to copy or move files about a distributed system without
actually moving all of the data. If, for example, users wish to make their own
working copy of a large fileset, the copy function contacts the replicator function
of the DFS which creates a set of internal pointers to the actual file information. If
the user modifies some of this dataset, the modifications are placed in a
separate file area and the corresponding pointers are updated. With this
approach, only one copy of the unmodified data exists, potentially saving not
only storage, but the computer time necessary to transport the potentially large
volumes of data. The replicator can also update the unmodified file with cache
data.

5.4.1.2 Cache manager. The cache manager module provides the interface between
the DFS client and server functions. It operates within the host system just like the
Network File System (NFS) commonly found at most Unix sites. If a host deals with
NFES files as well as DFS files, the cache manager can operate in parallel with the NFS
on that host, if necessary. The main purposes of the cache manager is to maximize file
transmission performance and to manage the DFS token interaction to maintain
security and coherence in the system.

5.4.1.3 Basic overseer. Every significant subsystem in a distributed environment
possesses a function which manages all the other facilities of its ilk. The DFS core
management could be called the “basic overseer”. This function is paralle! to the DCE
and CMS manager and provides similar assistance. The manager starts all other DFS
processes in its “cell” and ensures that these processes continue to be active and in
communication with the DFS server.

5.4.2 Communications

Virtually every task which accesses data within the CMS will communicate file requests
to the DFS server. Once a fileset is located and opened, the majority of data transfers
occur between the lower level functions, minimizing further overhead. As hunks of the
filesets are moved between the DFS clients and servers, there is a constant stream of
token information between those two agents to maintain the levels of “coherency” and
security chosen for the CMS.

The communications are summarized below (note that communications to the batch
server and the real-time server are not applicable).

e Communication to the client. The DFS server will transmit data and tokens
to clients as they request fileset information.

e Communication to the manager. The DFS sends error information to the
CMS management server. In addition, the CMS manager may request

5-20



Major CMS Elements

regular updates on storage space and fileset allocations which it may need
during negotiations in the event of competition for system resources.

e Communication to the database manager. Data and tokens

e Internal. A major source of information interchanged within the DFS server
is the pointers and locator information which results from file replication and
file movement requests.

e Communication to the CORBA. If possible the entire CORBA database will
be maintained within the DFS. Data and tokens will be sent to the CORBA
when requests are made by that system for objects and object information.

e Communication to the model servers. Data and tokens.

e Communications to the models. Data and tokens.

e Communication to the DCE. Re-authentication requests.

e Communications to the decision server. Data and tokens.

* Response to requests from clients and servers. The DFS server returns
fileset pointers from locator requests by CMS clients and servers. Requests
to retrieve and store data are serviced through the cache management layer
of the DFS.

5.4.3 Concurrency

- A DFS server will normally be dealing with numerous CMS clients and servers at the
same time. All of these activities are necessarily asynchronous and parallel. These
characteristics imply the need for multiple processes and some multiple threads within
the DFS.

5.4.4 Performance

The evolution of the DFS from the AFS has aimed at improving the data transfer
performance and data security and integrity of the filesets. The CPU platform and the
network interconnection with CMS clients and servers must be the highest in the
system within the economic constraints of any given CMS implementation.

5.4.5 Error Handling

The DFS possesses a number of error handling facilities and recovery and backup of

critical filesets can be accomplished within the DFS. Extensive error reporting is
provided to the CMS manager and to the requesting CMS client or server. Error
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reporting includes the tools for tailored recovery techniques and, when all else fails, for
the “graceful” termination of processes.

5.4.6 Implementation

The DFS is implemented in the “C” language with IDL header files which create a
framework which is very similar to C++. This approach was taken with the DCE and
DFS developments to use the native “C” compilers on the widest array of platforms, as
C++ systems were still in their infancy on some vendor's machines at that time.

5.4.7 Operation

To illustrate the operation of the DFS, we will use a simple scenario which might occur
during a model setup and execution, as described in Section 2.4.

e Client fileset selection. Once the CMS client has been logged in to the
CMS and authenticated for access to the DFS and the database manager,
the user will wish to obtain a list of the filesets available for input to the model
of interest. The first step is for the client to retrieve the “fileset type” from the
model server. Then the database manager is asked to provide a list of these
filesets. This list appears in the client GUI window and the user makes one or
more selections.

The client then requests access to these files from the DFS. This involves the
sending of requests to the DFS locator. This process ensures that the filesets
are actually available in the current CMS, that the user is permitted to access
the files, and determines the location of these filesets.

The user in this scenario, interacting with the client, determines that the files
may be left in place where they are physically situated and that the data will
be accessed over the network from the CPU that is executing the model.

The full CMS name for these files is then passed on to the models to be used
to open files, read and write data, and close the files.

e Model reading data. The model receives the filenames from the CMS client
and opens the files in the normal Fortran manner. These open functions are
passed to the DFS client which turns them into DCE RPC which invokes the
DFS server open functions. If CMS security is enabled, the requests are
accompanied by authentication information. The cache manager on the host
running the models will make read requests for ‘file chunks’ as the local
cache becomes depleted. Again, each of these requests may contain further
authentication information. In some cases, this authentication information
may contain time-stamps. Some data may be marked “stale” after an elapsed
time in the DES cache and will have to be “refreshed” by the cache manager.
This operation is invisible to the user. If the model is reading data produced
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by other processes which are being executed simultaneously with the model,
the data requests from the model may not be fulfilled immediately. In this
case, the DFS /O operations will be blocked. The model execution itself will
not be blocked until it has exhausted the particular DFS cache.

e Model writing data. The model writes data using Fortran, C, or C++ I/O
calls exactly as it does in today’s Unix or PC environments. The DCE/DFS
system tumns these calls into RPC at the time of compiling and linking. As
data are produced by the model and a “write” operation is performed by the
program, the output is first cached on the host executing the model. As the
cache manager determines that sufficient information has been accumulated
for efficient transfer to the DFS server, actual communications are
established with a DFS server. If no demands are being made for the model
output, this process continues until model termination. If, however, the model
output is being read by another process, the cache manager may be told to
flush its information to the DFS “immediately”. If the fileset “hunk” is available,
this will be done even if the data segment size is not optimal for network
transfer.  (If properly implemented, we do not expect this to cause a
bottleneck.)

55 The CMS Model Server

Figure 5-6 provides a block diagram of the CMS model servers and their relationship to the
client and the models themselves.

5.5.1 Components

The CMS client possesses no inherent knowledge of the models it will invoke. Model
parameters, input and output data requirements, etc., must be provided by the model
server. To accomplish this, the model server 1) must have knowledge of the presence
of models in the system; 2) must provide the CMS client with GUI instructions; and 3)
must possess the resource requirements for each model. These three components are

discussed below.
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Figure 5-6
The CMS Model Server [5]

5.5.1.1 Registry. The model server registry function is a GUI-based module which is
used by model developers and the CMS administrator to identify a model to the CMS
and provide all the information needed for client setup and execution of the model. The
CMS client function will request a list of models of a given type. The model server will
provide this data to the client based on the client’s authorization to access one or more
of the models.

5.5.1.2 Interface templates. From the model server registry function, a set of
templates are created and stored for each model. When the client selects a model, it
requests these templates which are used to create and guide the user’s interaction in
the process of model setup.

5.5.1.3 Model resource requirements. In addition to the GUI templates, the model
server maintains a database of data formats and means of forecasting fileset sizes for
the execution of each model. In addition, this database contains information on the
computational and /O bandwidth requirements for each model. These data are
provided to the client during model setup to aid in determining the appropriate locale for
the model execution. The CMS management server may request these data when
confronted with the need to arbitrate between two or more clients competing for these
resources.

5.5.2 Communications

The principle communications of the CMS model server will be with the CMS client,
since that agent seems to be the natural resource on which to run the registry process,
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as well as the model setup procedure. However, newly-developed models may take
advantage of the database maintained by the model server to establish their most
optimal input and output formats for data on a dynamic basis. (In many cases, the
model itself is a more efficient place to perform some data transformations, than to
require an intermediate file “conversion”.)

The communications are summarized below (note that communications to the database
manager, the batch server, the decision server, and the real-time server are not

applicable).

e Communication to the client. Transmits GUI templates for the particular
model. Transmits data on resource requirements for the model.

e Communication to the manager. Transmits model resource requirements,
when requested. Sends urgent error information or error log data for non-
crucial errors.

e Communications to the DFS. The model server may operate on two or
more platforms and hence, will need to share data through a mounted file
system. All registry, template, and resource data will be written to and
retrieved from the DFS.

e Communications to the CORBA. The model registration process for CMS
will produce information which will be sent to the CORBA. The principle
elements will be the parameterizations, their formats, and contents for the
models which will be used within the CORBA to create appropriate “stubs” for
other processes when they wish to link to the models.

e Internal. There is a need for the three functions to share the directories for
models, as well as the template and resource databases. This can be
accomplished through file sharing and will not require inter-process
communications for these functions.

e Communications to the models. The model server will request dynamic
information from all newly-developed models during the registry process.
While most of the information could be obtained from the user via the
interactive registry session, model version and resource requirements (such
as CPU memory demands) are best drawn from the models themselves to
minimize user intervention to the maximum extent possible.
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e Communications to the DCE. Authentication requests for user/model
combinations.

e Response to requests from CMS clients and servers. The model servers
all accept requests for service only from the CMS clients and from the CMS
management server.

5.5.3 Concurrency

Except when attempts are made to perform create, update, or delete operations on a
model’s registry, all functions of the model server can be operated in parallel and with
multiple instances of the function.

5.5.4 Performance

The model server registry, template, and resource requirements retrieval must be
sufficiently responsive to sustain the interactive nature of the client GUI session. The
resources required to do this are minimal. However, since the function can be
replicated on multiple platforms, there is no apparent performance limitation foreseen
regardless of the host CPU capacity.

5.5.5 Error Handling

The model server will rely on the error detection and recovery facilities of the DFS for
the bulk of its own error handling. Internal consistency checks (such as, a model itself
being absent from the object database while it appears in the registry) will be performed
on a periodic basis and error reports sent to the CMS management server.

5.5.6 Implementation

The CMS model server will be one of the unique facilities in the CMS and will have to
be designed and developed by the CMS development team. It will utilize all of the
system functions, such as the DFS, and will be implemented with object-oriented
programming technologies.

5.5.7 Operation

There are two distinct modes of operation of the model server: 1) model registration;
and, 2) model information retrieval. We will discuss a simple scenario for each one,
involving an admittedly simplistic model.

e Registration. For this example, we shall presume the existence of a simple
diagnostic wind model which was written many years ago. For practical
purposes, it has been decided that the model must be used “as is”, without
making any effort to modify its source code (a classic “legacy code”). The
CMS administrator, or a CMS developer with appropriate authorization, would
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log in to a CMS client and invoke the model registry function. Since this is a
new model, they would select that function from a menu.

A model “class” would be identified: air quality, meteorological,
emissions.

Model name and version number: supplied by the user.

Since this was a “legacy model”, the user will provide a description of
the input parameter types, ranges (if applicable), and defaults (if any)
for the command line invocation of the model.

For each of these parameters, the user can select a GUI menu,
dialogue, or other interface to be used when the model is being setup.
This can include the invocation of an alternative GUI-based database
creation. In this case, this user would elect to start a 3D graphical
system during model setup. This interface would allow the user to
establish geographical coordinates, grid layout, and perhaps,
boundary values for each run.

The location of the binary(s) for the compiled and linked model are
given by the user and they are moved into the CMS object database.

The user is asked to provide ranges of the expected sizes for each
dataset which is designated by the input parameters. Information on
CPU and network requirements are also provided by the user.

The GUI templates and the resource data are stored in a DFS
database for the model server.

The administrator can create an access control list (ACL) for the
model, giving explicit permission to selected users to access the
model.

Model characterization. When a user logs in to a CMS client to setup a
model, they are presented with a GUI menu from which they select the model
type. The system begins the process of interactively assisting the user in
model setup and execution.

The model type information is sent from the CMS client to the model
server.

The model server retrieves the list of models of that type and returns
to the CMS client the names of those models for which the user has
access permission. In addition to the names of the models, a brief
narrative profile of the models is supplied to the CMS client.
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- The user makes a selection from the list.

- The client requests the model characterization information from the
model server.

- A series of GUI “templates” are supplied to the client. These
templates present the user with menus, selection boxes, and other
schema to acquire the information needed to setup and execute the
model.

- In this example, one of the “templates” invokes the 3D graphical
process to interact with the user to define the locale and the grids
needed for this model.

- Once the parameters have been established, the user must determine
where the model will run.

- From the database requirements and locale of the model, the user is
asked to choose a number of options prior to starting the model. The
input dataset may be moved to the selected CPU host or the user may
choose the model to perform its I/O to one or more distributed filesets.

- When the model is finally invoked, a log entry is sent to the model
server giving the user id, start-time, and location of execution for
possible diagnostic and statistical analysis.

56 The CMS Program/Object Server (Object Management Mechanism)

Object management mechanisms are a software construct used to make it easier for
external programs to interact with a set of procedures and data. This is done by proving
some degree of encapsulation (see Appendix B) . A common example is the OLE
System from Microsoft. This is a rudimentary object management mechanism used to
exchange data between Microsoft Windows Programs via the clipboard. It provides a
means of packing the data along with a description of the data and how they should be
read. This allows a user to ingest a set of database data into a spreadsheet, for
example. A more sophisticated example might be the use of the SOM Object
Management System in OS/2 to allow the user to “drop and drag” a document icon onto
a printer or fax icon. Here the objects contain both the data and the routines (or
methods in object-oriented fingo) used to access the data. The common object
resource broker architecture (CORBA) is a more sophisticated object management
mechanism developed by the Open Management Group. It is intended to be a platform
independent system. As its name implies, the CORBA provides a repository and a
brokerage “service” for all the objects under its control. This “service” ranges from
ensuring proper associations between objects which are activated by user requests, as
well as managing the necessary interlocks and registries necessary for system
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coherence. For example an object may be a temporal database which needs updating
by one process while yet another process needs to access the same object. The
CORBA might block either requester until the other one is complete or it might initiate a
copy of the object so that both requests can be satisfied at the same time. It is our plan
to utilize CORBA in the development of the CMS. We must be aware, however, that
industry agreed upon standards often get swept away by competing commercial
entities; especially if the competition is Microsoft. In this case the competition is
between CORBA and a newer, more robust version of OLE being promoted by
Microsoft. The CMS development team will need to remain flexible on this issue and
see how things play out.

In the CMS the object management system will be used to encapsulate interactions
between models, functional modules (like advection), and the data sets they utilize. For
example, consider a modeler assembling a set of computational modules (advection,
radiation, etc.) into a simulation system specifically tailored to his needs. The modules
would be objects and the CORBA would be used to manage the interactions between
the modules. At a higher level, one can imagine an icon representing the observational
meteorological data for a particular day being dragged onto a RAMS icon to initiate a
simulation. Of course running a meteorological model (and maintaining a group of
models) is a much more complicated process than printing a document. The process
must allow for numerous user choices of parameters. It may not make sense to embed
this much intelligence into the general purpose object management mechanism. For
this reason, we have introduced the model server into the system, as described in
Section 5.5.

The distinction between the CORBA and the DCE environment must be made clear.
These are not competing systems. The DCE provides a set of low-level capabilities
(essentially an extension of the OS) in a networked environment, such as: file access,
time synchronization, directory services, remote process control. The CORBA operates
at a higher level, i.e., with application oriented data structures rather than at the OS
level. It utilizes the underlying DCE in a transparent fashion. Some semantic confusion
on this issue may arise from the fact that the DCE provides capabilities for allocating
DCE server resources and services among competing nodes (CPUs), which has been
called “Resource Broker” by the Open Software Foundation.

Figure 5-7 presents an overview of the common object request broker architecture
(CORBA) as defined by the designer's architecture and specification document. As the
CMS develops into a fully featured and robust system, its hallmark will support dynamic
growth in a variety of models. The evolution of the CMS from its first prototype to a truly
comprehensive modeling system will finally require a sophisticated system for managing all
of the pieces of the CMS in this dynamic environment.
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Figure 5-7
The CORBA Program/Object Server [6]

5.6.1 Rationale for the CORBA

The rather involved block diagram displayed in Figure 5-7 masks a rather simple
principle cited several times previously — “Plug and Play”. We want to have, in the
CMS, the ability to interchange components at several levels of the system with as
much transparency as possible. In the best of all possible worlds, this would extend to
interoperability among subsets of the CMS and other systems, such as Models-3.
There are three principle opportunities for this kind of interoperability as illustrated
below.

The simplest mechanism for inter-system interoperability is presented in Figure 5-8. It
provides data for use of both systems in a clean, interchangeable manner. The
approach to this would be to establish a common format for all files and a common,
shared storage system for this data. Use of widely held standards in the implementation
of the system is one of the key CMS design principles. The ultimate goal here is to
make this process almost automatic in the future.

In Figure 5-9, the concept of inter-system interoperability is extended to include the
interchange of models or other major components of the system. One of the first steps
in bringing the CMS to reality is to make all of its components interchangeable. If this
can be done in accordance with modern system standards, then it can be hoped that all
other systems such as Models-3 will be able to provide subsystems which will conform
to these standards with consequent interoperability opportunities.

5.6.2 An Idealized Object-Oriented System

The diagram in Figure 5-10 describes the idealized situation which our long-range
planning for modeling systems should be targeting. In this “best of all possible worlds”,
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models and model support software would consist of well-crafted scientific modules
which could be used in any one of many models depending on the requirements of a
specific user. A necessary step toward this goal is the establishment of a standard
framework for model and model component development and exploitation. The CORBA
provides this structure and the guideposts needed for future model development and
integration.

Figure 5-8
Inter-System Interoperability

CMS Models-3

—

Models

Figure 5-9
Inter-System interoperability
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| |
[ CMS Models-3 !
I 1
1 |
1 I
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'l Model [* Model I
! Common |
: Function :
1 Pool |
1 I
| Model < Model 1
1 |
U ———— !
Figure 5-10

Fine-Grain Interoperability
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5.6.3 The Basic Object Broker Task

A usage of Figure 5-7 can be seen in Figure 5-11, where an application program makes
a subroutine call to a major function, “advection” for example. This function may be
implemented in several different ways, different physics, different grid structures, or
different forms of parameters. Future CMS applications will partition the functional
elements into “objects” (see “Object-Oriented Design” in Appendix B). These objects
will be catalogued by the object broker. Invocations of these functions will be possible
through both static and dynamic means. In either case, the object broker locates the
desired functional object and provides automatic (and thus, transparently) conversion of
parameters, not only mathematically, but perhaps, in terms of coordinate system
transforms.

. Functional
Client Modules

~N S

Dynamic Invocation
Object Adapter

[6] CORBA
Program Object Server

b e o e e e e ———— — ———— it T . o e i o .t . e

Figure 5-11
lilustration of a Usage of Figure 5-7

5.6.4 Standards

The most important means for CMS to maintain a high level of systems technology
throughout its life is to rely on the use of standards in every aspect of its development
and operation. Interoperability and interchangeability are encouraged through the
philosophy of “open systems design”. An “open system” is one that contains no
proprietary components and which is intended to share software with other systems.
Since this is the premise for the Open Software Foundation (OSF), the employment of
the DCE from the OSF is a major first step. As the CMS becomes more formally object-
oriented through new development, the evolving CORBA will become the basis for an
even more flexible and open system.
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5.7 The CMS Models

Figure 5-12 displays the main group of models to be used in the CMS and their interaction
with the client, database (manager and DFS), and the CORBA. There are two major tasks
to undertake in the area of models for the CMS, as discussed below.

Meteorological

Air Quality

e e e e o e e —_—————_——— o ——— o —— —

Figure 5-12
Meteorological, Air Quality, and Emission Models (7]

5.7.1 Task 1 - Existing Models

The CMS will initially incorporate a collection of existing models, most of which have been
developed independently of one another. Adaptations of these models through “wrapping”
will then be employed to provide simple interchangeability, wherever possible. In the
Prototype #2, demonstration of two models which have not been run in concert before will
be adapted in this manner. The design goals for this part of the project are to provide similar
“wrapping” for a few of the models listed below.

e Emissions models

JEWEL (CMU)
Modeis-3 modules
FREDS

EPS

EMS-95
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e Meteorological models

- RAMS (Colorado State University)
- MMS5 (Penn State)

- ARPS (University of Okiahoma)

- HERMES (ARIA Technologies)

- DWM (SAl)

- MATHEW (LLNL)

e Air quality models

- CIT/URM (CMU)

- SAQM (see SARMAP in Appendix C)
- ADOM (Environment Canada)

- UAM-V (SAl)

- CALGRID (California ARB)

- MONTECARLO (FaAA)

- AVACTA Il (AeroVironment)

- MESOPUFF (EPA)

5.7.2 Task 2 - New Models

A key design task for the CMS will be to establish guidelines and standards for future
model developers. These will prescribe methodologies wherein future models and their
principle components are conceived of as objects from the outset and programmed with
modern Fortran-90 or C++ techniques and practices.

5.8  The Distributed Computing Environment (DCE)

Figure 5-13 presents a block layout of the DCE, which has a number of layers, much as
does the CMS. These layers may be accessed directly by clients and servers. The DCE
provides industry-wide standard means for controlling and accessing computing resources
which may be distributed across administrative, organizational, and geographic boundaries.
The DCE consists of a number of functions which reside on each CMS machine and are
designated DCE client processes. One of the hosts in the system performs the functions of
DCE server. :

We expand the discussion below of DCE client, directory of services, security services, and
time synchronization.
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Figure 5-13
Distributed Computing Environment (DCE) [8]

5.8.1 DCE Client

The fundamental building blocks of the DCE are two programming concepts: “pthreads”
and “remote procedure call” (RPC). While the general user may ignore these facilities,
they will, in fact, be operating in concert with the user interfaces, the user’s programs,
and the many systems programs which make up the CMS. In Section 2.3.1, the RPC
concept was introduced as simply another form of implementing a subroutine call for a
Fortran, C, or C++ program. “Pthreads” (or POSIX threads) are only of interest to the
system programmers of the CMS. A “thread” is one of the ways in which separate
program executions are managed on today’s Unix, OS/2, Windows NT, and Windows
95 operating systems. The POSIX standard for threads has provided an extensive set
of functions (54 functions) for creating and managing these threads of control. The
abbreviated title “pthreads” has become the accepted name for this standard.

While internal CMS processes may employ “pthreads” when they are implemented by
the CMS team, user models will not require any special handling because of the use of
this system control mechanism. In rare cases, a model developer may use a different
procedure for compiling and linking their codes in order to incorporate the RPC. The
CMS design will attempt to minimize this visibility of the RPC as much as possible.

The DCE client then consists of one or more programs which have been compiled and
linked with the hosts software, after a minor amount of “preprocessing” by a DCE
function which incorporates a set of “include” files. A continually-running background
process, called a “daemon”, provides the physical communication between the DCE
programs (on the client) and the DCE server and all of the other CMS servers.

5.8.2 Directory Services

When a DCE client is first introduced to the system, it does not know where any of the
DCE or CMS functions are operating. The DCE client does know about the presence of
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the DCE server on the network. Therefore, the CMS client contacts that server to
obtain permission to use the services of that DCE and the CMS servers which it
manages. Once permission is secured, the location or network address of a desired
CMS function is then obtained. For example, the CMS client may have a program
which is making a function call to open a file through the DFS. Once this network
address is provided to the client, all other “open DFS file” calls will be directed to that
DFS host, thus bypassing any further directory service inquiries.

5.8.3 Security Services

A DCE-based system can invoke several optional layers of security. As a minimum, the
DCE client must be operating on a host known to the DCE server and the user must
have permission to log into that DCE client. At the other extreme, the DCE server
maintains the only repository of user login passwords and carries on all authentication
actions with clients and servers with encrypted messages. Further, any or all data
transferred between clients and servers (including DFS file data) can be encrypted with
the Kerebros 5 (K5) standard methodology (Kohl and Newmann, 1993).

5.8.4 Time Synchronization

File integrity, system security, interprocess, and inter-host management demand that all
elements of the DCE/CMS maintain close time synchronization. For example, file creation
times in a distributed system can be a source of chaos if one of the cooperating host
machine’s clock is substantially behind the clock of the host who owns the file and a user
chooses to purge all files older than ten minutes from the host with the “siow clock”. DCE/
DFS authentication and re-authentication depend on tight time synchronization. Hence, the
DCE supplies a master time distribution and update function.

59 The CMS Batch Server

The CMS batch server is shown in Figure 5-14. Its primary function is to schedule jobs for
execution on one or more computing systems within the CMS. Batch service development
for distributed computing systems began with Stirling Software’s development of the
Network Queuing System (NQS) for NASA Ames Research Center in 1985. Since then, a
number of robust systems have become available, in addition to the continually evolving
NQS. These systems include the commercially available LoadLeveler from IBM and LFS
from LFS Company in Toronto, Canada. Public domain batch servers are “CONDOR” from
the University of Wisconsin (which became the basis for LoadLeveler) and the Distributed
Queuing System from the Supercomputer Computations Research Institute at Florida State
University. All of these systems are mature and have been operating at many sites
worldwide. Therefore, the CMS has completed technologies available for this function.
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[9] CMS
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Figure 5-14
The CMS Batch Server [9]

5.9.1 Components

The CMS batch server consists of a master queue “daemon” (background process)
running on at least one CMS host, and one or more batch server daemons running on
CMS hosts which will provide the actual services. The batch server acts as a
“surrogate” for the user and attempts to optimize the resources under its control as well
as maximizing the throughput of all jobs submitted to it for scheduling. The major
functions of a batch server are:

e Batch Queue Management — maintaining control of batch server daemons , job
scheduling

e Job Migration — Moving queued and/or running jobs from one host to another

e Job Tracking — Tracking and reporting the status of all jobs, maintaining
accounting information '

e Initiation and Termination — starting up and shutting down single and multiple
processor jobs

e Data Disposition — copying stdout/stderr, moving output files, removing
temporary files

5.9.2 Implementation
All of the candidate batch queuing systems are ifnplemented in standard “C” so that
they can be compiled and executed on literally any Unix platform. With the exception of

the IBM LoadLeveler, all of the candidates can operate under OS/2 and Windows NT.
Windows 95 implementations are currently underway.
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5.9.3 Operation

Batch Servers provide two major functions: 1) scheduled delivery of services that would
require time consuming resources; and, 2) chores, such as the production of high resolution
plots on mechanical graphing equipment, or the production of animations for video tapes
and CD ROMS; or production of multiple instances of elements such as hard copy graphic
images.

5.10 The CMS Decision Server

Figure 5-15 provides a rough sketch of the CMS decision server and its relationship to the
client and database subsystems of the CMS. The decision server will provide a database
and GUI templates which will be invoked by the user to assist in proceeding through the
many complex decision paths which may have to be traversed to accomplish certain
regulatory or scientific functions. The nature of these functions is only understood at the
conceptual level at this time. Detailed design of this segment must await the design of the
preceding servers and an extensive analysis of user needs in this area. Implementation of
this component can be delayed to a later stage of the CMS program, as it is not critical to
the overall operation of the system.

The decision support server contains the procedures that would be used in the decision
support process. This can include batch, economic analysis, optimization, etc. Output
would go both to the batch server as well as the database server.

Client Database
Manager

\ /

~ [10] CMS
~ Decision Server

Figure 5-15
The CMS Decision Server [10]

5.11 The CMS Real Time Server
Figure 5-16 provides a general view of the CMS real-time server and its relationship to the

client and database systems, as well as remote sensing systems, which may be used in
part of the CMS, in the final configuration. The design and implementation of this
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component will be performed at a later stage of the CMS when the requirements for real-
time data acquisition and incorporation into CMS programs are better defined.

Remote
Sensors

Database
Manager

2/

[11] CMS

Real-time Server

Figure 5-16

The CMS Real-Time Server [11]
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MANAGEMENT PLAN

The management plan for the development of the CMS is based upon the following key
concepts. We provide here some general structure and recommendations. The CMS
development team is expected, of course, to formulate and finalize the management
plan and adapt our recommendations to fit their needs and budget availability.

* Management Structure

The development team will work with a clear management structure and precise
allocation of responsibilities. The development effort will be performed by a consulting
team of scientists, led by a Project Manager/Principal Investigator (PM/PI) having the
overall technical and budgetarial responsibility for the project and reporting directly to
CAMRAQ Project Manager. The PM/P!I will provide general guidance and supervision
and be in charge of resolving conflicts, when required.

e Subcontractors

Several subcontractors will work on the project (see Figure 6-1). Each subcontractor
group will be led by a Group Leader (GL) reporting to the PM/PI. The GL will be
responsible for the technical performance of the group and the financial issues
associated with the subcontract.

CAMRAQ
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[ pwp ]

TOL

CML
PRL

|
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I
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| ROL
i

I

I

I
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{ ] | 1
1 |Main Contractor | | Subcontractor 1 | Subcontractor2{ ... Subcontractor N | |
1 GL GL GL GL |
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!

.___________________.__._____________.___.__._____._.

Figure 6-1
Management Plan — Main Contractor and Subcontractors
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e Technical Tasks

Each project effort (see below) will be subdivided into tasks. Each task will be
performed by a “leading” team of scientists, from one or more groups, and monitored
by a “monitoring” team (see below). The leading team for each task will be managed by
a Task Leader (TL) reporting directly to the PM/PI. The TL will be responsible for the
technical performance of the task team and the financial issues associated with the task
effort.

e Matrix Management

The development team will adopt the matrix management approach. Each scientist
working on the project will report to two managers, the GL (who will not change) and
the TL (who will change depending upon the specific task in which the scientist is
involved). The TL will focus its supervision on the objectives to be achieved in the
specific task and the deliverables that need to be provided on time and on budget. The
GL will focus its supervision on assuring that resources are properly allocated and that
the scientists in its group are performing well as a whole in all tasks in which they are
involved.

e Planned Redundancy and Task Monitoring

In a project as complex as the CMS, problems should be expected in some of the
tasks. Problems may create delays, crises, and some redesign of work segments and
even entire tasks. Serious problems may create the need for restructuring task teams
or, in extreme cases, rearranging the groups involved in the project.

Problems will never be very serious if they are identified in time. For this reason, the
CMS development team will operate with a certain degree of “planned redundancy” and
with the use of “task monitoring” teams (see Figure 6-2). Planned redundancy means
that two teams will be selected for each task. The first team will be the “leading” team,
in charge of performing the actual work. The second team will be the “monitoring” team,
but as capable as the leading team of performing the task. The monitoring team will be
led by a Task Monitor (TM) who will report directly to the PM/PI. in each task, the
monitoring team will dedicate a level of effort of 5-10% in proportion to the development
effort of the leading team actually doing the work. This monitoring effort will assure that
the leading team is operating in a cost-effective manner, providing results on time and
on budget and in agreement with other parallel efforts. If necessary, the monitoring
team will be able to provide extra support to the leading team and, in extreme cases,
take full control of the task effort.
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Management Plan — Task Management and
“Planned Redundancy” Through Task Monitoring

* Oversight Leaders

In addition to the management structure discussed above (PM/PI, TLs, and TMs), the
project team will inciude four “oversight” leaders with the following specific functions
(see Figures 6-1 and 6-2).

- Regulatory Oversight Leader (ROL), reporting to the PM/PI with the
general responsibility of monitoring the regulatory aspects and
implications of the CMS. The ROL will make sure that the regulatory
community will be well informed about the CMS and find it useful and
applicable to their specific needs.

- Technical Oversight Leader (TOL), reporting to the PM/PI, with the
general responsibility of monitoring the technical aspects of the CMS.
The TOL will make sure that the CMS remains anchored to the best
available science and its technical objectives are properly fulfilled. (If
appropriate, two TOLs could be selected, the first for atmospheric
sciences and the second for computer sciences.)

- Contract/Subcontract Management Leader (CML), reporting to the
PM/PI, with the general responsibility of assuring correct and smooth
management of contracts and subcontracts. The CML will also make
the effort of minimizing contractual paperwork and allow scientists to
concentrate their efforts on technical issues instead of administrative
details. The CML will establish simple but effective procedures for
contract/subcontract management and progress monitoring.
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- Public Relations Leader (PRL), reporting to the PM/PI, with the general
responsibility of assuring continuous and effective public relation
efforts and external exposure.

The PM/PI will arrange, at least on a quarterly basis, a meeting/conference call with the
four oversight leaders mentioned above. To avoid an excessive number of
managers/leaders, some scientists are expected to take more than one position. For
example, it will be possibie for a senior scientist to be TL in one task and TM in another
(and even one of the four oversight leaders, if appropriate). We do not anticipate nor
recommend the PM/PI to take any TL or T™M responsibility, except in exceptional
situations (the PM/PI could, however, assume one of the oversight tasks, e.g., the PRL,
if appropriate).

e Communications

All communications among team members will be electronic. There will be a “preferred”
communication system (the Internet), an “alternative” communication system (e.g.,
America On-Line), and an “emergency” communication system (phone, pager, fax).
Formal written communications will be kept at a minimum. On a monthly basis, the
PM/PI will provide a one-page progress report to the CAMRAQ PM and an informal
project status report to all scientists (a direct communication channel between the
PM/PI and the scientists is important to assure that all members are informed about the
project and to emphasize openness among the team). Each GL and TL will provide a
monthly one-page progress report to the PM/PI. TL reports will also be copied to each
corresponding TM. Each TM will provide a monthly one-page monitoring report to both
PM/Pl and the TL. The PM/PI will arrange, at least on a quarterly basis, a
meeting/conference call with all TLs and a separate meeting/conference call with all
TMs. Additional communications will, of course, be required if problems arise.

¢ Management Tools
The development team will use the most modern methods and software for project and
time management. For project management, all plans will be developed and monitored

using Microsoft Project. For time management, the software package In Control will be
adopted.

e Productivity Tools

The development team will adopt Microsoft Office as the standard productivity tool for
report preparation and technical presentations.
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* CMS Development Efforts

We call Phase Il the development phase of the CMS (Phase | was the design). Phase II
will consist of the following major efforts:

- Effort #1: Development of Prototype #1 (ongoing; completion expected in
February 1996) (This effort was previously identified as a parallel effort, PE,
but is actually the first step of Phase )

- Effort #2: Development of Prototype #2 (Mar-Jul 1996)

- Effort #3: Development of Prototype #3 (Aug-Dec 1996)

-  Effort #4: Development of a “basic” CMS (Jan-Dec 1997)

-  Effort #5: Development of an “intermediate” CMS (Jan-Dec 1998)

-  Effort #6: Development of a “full” CMS (Jan-Dec 1999)

- Effort #7: Periodic maintenance and upgrade (continuous effort from 2000

on)

e CAMRAQ Management Structure

CAMRAQ's management structure has evolved as the organization has grown and is
expected to undergo further changes as maturity is approached. At present, CAMRAQ
is directed by an executive committee composed of those CAMRAQ members who are
contributing financially to the CMS design project. Important functions of the executive
committee are to set policy for the consortium, set rules and criteria for CAMRAQ
membership, approve access fee structures, and approve new members. Currently,
CAMRAQ also includes an associate membership class, which is composed of
interested individuals and organizations that do not contribute financially to CAMRAQ
operations. While voting privileges and electronic access to CAMRAQ resources are
currently restricted to executive members, associate members are encouraged to
participate actively in all CAMRAQ meetings.

A new membership class, a “subscriber membership,” is anticipated in the near future,
to accommodate those organizations who desire CMS access but cannot contribute
financially to CAMRAQ developmental activities. Under this anticipated plan,
subscriber members will pay a smaller log-in and maintenance fee for CMS access and
will compose a subset of the associate membership. This anticipated plan also
involves formation of a general committee, comprised of members and associate
members. This committee will be the primary conduit for communicating to the
executive committee community feedback on CMS attributes and capabilities, both
existing and desired. It also will formulate, for approval by the executive committee,
criteria and rules for CAMRAQ membership, for screening, accepting, and placing
visiting scientists, and the schedule of fees for access to CAMRAQ products.

At present, the CAMRAQ coordinator is on contract with EPRI and works closely with
the EPRI project manager in the planning and implementation of CAMRAQ initiatives.
The coordinator serves as the point of contact for information on CAMRAQ.
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SCHEDULE AND COST

In the previous chaper, we described seven major efforts for the development of the
CMS. The expected cost of each effort is presented below.

Effort Cost’ Period of Performance Cumulative Cost

(1995 $) (1995 $)
Effort #1 $100K (completion expected in Feb 96) $100K
Effort #2 $350K (Mar-Jul 1996) $450K
Effort #3 $450K (Aug-Dec 1996) $900K
Effort #4 $950K (Jan-Dec 1997) $1850K
Effort #5 $900K (Jan-Dec 1998) $2750K
Effort #6 $850K (Jan-Dec 1999) $3600K
Effort #7 $200K (yearly, from 2000 on)

In comparison with the costs experienced by previous major model development
efforts, the cost estimates presented above may appear quite “optimistic”. We believe,
however, that these estimates are realistic if the development effort is to be conducted
by experienced and dedicated scientists and managed in a firm and cost-effective
fashion. Costs can be contained if all members work toward the goal of the project
without separate R&D agendas. Project management must be capable of properly
directing and supervising the staff, detecting early or dangerous deviations in priorities
and goals, and performing corrective action. Under these conditions, we believe that
the CMS can be successfully developed, on-time and on budget, with the costs
allocated above.

" Costs include the 5 to 10% extra cost due to the planned redundancy and task monitoring activities
discussed in Section 6.
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CONCLUSIONS AND RECOMMENDATIONS

The CMS design team has provided, in this report, a detailed design of the CMS and a
plan for its implementation. We emphasized the need for a development plan based
upon a sequence of increasingly comprehensive prototypes.

Even though the design proposed here is comprehensive and detailed, many issues
are expected to be discussed and redefined by the CMS development team. In fact,
computer sciences are evolving at a very fast pace and recent developments, such as
the dominant presence of Windows 95 and the availability of Internet-based cross-
platform programming languages such as Java, may allow the development team to
adjust and improve the development plan in a cost-effective fashion. '

In conclusion, while we believe that this document provides a solid basis for the
development of the CMS, we recommend the development team perform a constant
and systematic re-evaluation of available software tools and hardware products. This
approach will ensure that the CMS remains at the cutting edge of both computer and
atmospheric sciences and will provide the CMS user with the most cost-effective tools
for air quality simulation, analysis, and decision support.
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A Discussion of Object-Oriented Design &
Programming

It is acknowledged that various readers of this document will be approaching the
computer system design presented here with some foreboding. The introduction of the
concepts of object-oriented design and object-oriented programming to the CMS
design, while key to its success, can create some confusion and consternation among
all but the most dedicated computer “hacker”. We will attempt to explain the key
ingredients of the object-oriented approach, in hopes that its power and flexibility can
be understood by the community which will come to depend on it.

We will first deal with the concept of object-oriented programming, then extend the view
to the process of object-oriented design. In the popular literature, one will read that
object-oriented programming as represented by the C++ system, possesses three key
qualities beyond existing programming languages: “strong typing”, “encapsulation”, and
“inheritance”.

B.1 Strong Typing

To explain these concepts we will return to the programming roots which many of us
share, Fortran. “In the beginning”, a Fortran programmer was free to use many
shortcuts which today’s environments seldom tolerate. The programmer could assume
the implicit definition and type of any variables whose names began with the letters: i, j,
k, I, m, or n. This was a dandy shortcut and saved a lot of typing in early programs. But
if one wanted an array of floating point variables named MONSTER, the data had to be
declared with the Fortran statement REAL MONSTER(1000). In short order, programs
grew in size and confusion as the “implicit typing” (I-N) and the “explicit typing” (REAL,
INTEGER) were mixed within programs, subprograms, and functions. The original
author might be able to keep things sorted out, but others, given this code as an
“inheritance” would stumble for some time before attaining comprehension of the
variable definitions.

The next step in this chaotic process is when the arbitrary function and subroutine
capabilities were placed into the programmer’s hands. Fortran made no restrictions on
the variable passed by one routine and received by another. A common blunder in
Fortran programming would be:

PROGRAM MAIN
REAL THISISREAL(1000)
CALL TESTDATA(THISISREAL, STATUS)
END
SUBROUTINE TESTDATA(IDONTKNOW, ISTATUS)
INTEGER IDONTKNOW(10000)
ISTATUS=0
DO 1000, 1=1,10000
IF( IDONTKNOW.eq.1) ISTATUS=1
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1000 CONTINUE
RETURN
END

Now the above example is patently ridiculous (unless one has some clever
programming scheme afoot). It will cause all sorts of mischief. If the program doesn’t
crash for having wandered into CPU memory that doesn’t exist it will most likely return
a false status. This example represents the antithesis of the concept of “strong typing”.
Here the programmer is attempting to pass a real array of length 1000 to a subroutine
which expects a much larger array of integers. .Fortran programmers were not the only
culprits, of course, PASCAL and “C:” language programmers, could and did commit

similar sins.

Enter here the concept of “strong typing”, wherein the programming language and its
compilers demand that: -

1. The user must specify the type of all variables.
2. The type of parameters passed between programs or functions must agree.

A simple mechanism for accomplishing these aims was for Fortran compilers to provide
the IMPLICIT NONE contro! statement and for all Fortran or C modules would use a
“header file” to define the types of parameters expected by the function or subroutine
being called. “C” programmers have been using “header files” from the very outset of
their careers. These “header files” are alternatively called “include files” (and now every
Fortran-77 and Fortran-90 compiler handles “include files”). An include file which
enforces “strong typing” for the above example might appear as:

demo.inc

SUBROUTINE TESTDATA(INTEGER (*), INTEGER )

and the file would be included in the Fortran compilation of the example by an explicit
statement such as:

INCLUDE “demo.inc”

If this had been the case for the example above, the compiler would have detected the
error in the MAIN program which is attempting to pass the REAL array; whereas, the
“header file” indicates that a REAL array is required. The employment of strong typing
causes the errors to be detected and reported by the compiler rather than at some
unpredictable future time. The enforcement of variable types passed between programs
can be extended beyond the basic integer, real, and character variables to variable
types created from the basic building blocks. Fortran-90, C, and C++ provide the
opportunity for the user to create structures (for example, which can be given an
arbitrary type name which can then provide “type checking” in “header files”).
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For example, we create a single entity in the Fortran-90 language:

TYPE BASIC_T
SEQUENCE
INTEGERA, B, C
REAL*4 RA, RB, RC

END TYPE BASIC_T

This type definition may then be used in variable declarations in the main program,
such as:

TYPE (BASIC_T) AA, BA, CA

and the type definition might then appear in a “header file” which specifies the
interfaces for all subroutines and functions which will be called, such as:

INTERFACE
INTEGER FUNCTIONA( ARG1, ARG2)
BASIC_T ARG1, ARG2
END FUNCTION FUNCTIONA

END INTERFACE '

The main program might then utilize the variables and function:

STATUS= FUNCTIONA(AA,BA)

The inclusion of INTERFACE definitions make it possible for the Fortran-90 compiler to
perform the same “strong type” checking which C++ supports. The existence of this
facility does not, of course, guarantee that errors will not occur in parameter exchange,
but it does provide a “compile time” checking for a very common source of
programming effort.

B.2 Encapsulation

Once programming languages and compilers are empowered to check for and enforce
policies such as “strong typing” the mechanisms are in place to further improve the
processes of software development. One of the most powerful concepts arising from
these modern software technologies is “encapsulation”. An entity can be created which
contains all of its data and all the procedures which operate on that data. If the
operations on the data within this entity are restricted to those included with the entity
and no other program can touch the entity’s data, that entity could be termed
“encapsulated”. As an example, a Fortran subroutine with several entry points could be
contracted as an “encapsulated” module:

SUBROUTINE NEWMESH( SIZEX, SIZEY)
INTEGER SIZEX, SIZEY
REAL MAINMESH(1000,1000)
COMMON /MINE/XDIM, YDIM, MAINMESH
INTEGER XDIM, YDIM
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INTEGER |, J
XDIM= SIZEX
YDIM= SIZEY
DO I=1, SIZEX
DO J=1, SIZEY
MAINMESH(I, J)= 0.0
END DO
END DO
RETURN
ENTRY ADDPOINT( X,Y, VALUE)
INTEGER X,Y
REAL VALUE
MAINMESH(X,Y)= VALUE
RETURN

ENTRY GETPOINT(X1,Y1, RETVALUE)
INTEGER X1,Y1
REAL RETVALUE
RETVALUE= MAINMESH(X1,Y1)
RETURN

END

When the routine NEWMESH is called, it fills a two dimensional matrix of SIZEX by
SIZEY with a floating point zero. Note that the actual size of the array is held in the
variables, XDIM and YDIM, and are retained in the named COMMON block. The
subroutines ADDPOINT and GETPOINT place or return a floating point value in that
matrix at a specified location.

If the labeled COMMON block “MINE” does not appear in any other module of the
program, this data might be called “private”, and thus, this series of routines would
create and maintain the data entity “MAINMESH?” in a “fully encapsulated” manner. No
other process can affect the MAINMESH matrix.

If several different MAINMESH matrix sets are needed then copies of this example
could be created with different names for the subroutines, NEWMESH, GETPOINT,
and ADDPOINT, and the COMMON name. Each of these could be called “objects”
even though they are not exactly like the C++ “object” counterparts.

In C++, the above example would appear as a definition of a “class” (perhaps called
NEWMESH) and “objects” are created and given names using this “class” definition.
The subroutine name would remain the same for all objects but the invocation of that
subroutine would be “qualified” by pre-appending the object name followed by a period:

newmesh mesh-a(100,100); I* create a newmesh object named mesh-a */
newmesh mesh-b(112,134); f* create a newmesh object named mesh-b */

mesh-a.addpoint(10,20,3.1415);
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In C++, the array MAINMESH could be a static array within the object or it may be
created dynamically, depending on the needs of the applications. In C++ functions, data
can be specified as “private”; thus, the function addpoint might call another function
called “testpoint” which would only be available to the mesh-a object and no other. This
concept of “hiding” critical data and functions, gives C++ more flexibility in the scrutiny
of its objects than is possible in Fortran-90.

Once a “C++ class” or Fortran-90 subroutine has been defined in this way, the last step
is to compile the functional code and add it to a binary library. This library and the
“include” files, which contain the INTERFACE definitions then become the formal
definition of the “object” which other programmer can incorporate into their own
programs. Like the basic mathematics libraries which accompany every computer
system these days, the internal workings of these functions are invisible to the user.
They know only about the INTERFACE methods they are given in the include files.

This then is the process of “encapsulation”, creating modules which contain data and
processes which the user cannot directly access except through the explicit function
calls permitted by the “header” (include) files.

B.3 Inheritance

The last major feature of object-oriented programming we will discuss is that of
“inheritance”. This concept is not native to Fortran-90 as it is in C++ but we can try and
demonstrate how “inheritance” works in a primitive way using our Fortran example. Let
us pose a situation wherein a programmer wishes to provide a more robust matrix
handling capability than our simple ‘get and put’ example. This new module would
access the NEWMESH directly to perform a collection of new functions among which
might be MESHSUM:

SUBROUTINE NEWFUNCS(DUMMY)

ENTRY MESHSUM( SUMVALUE)
REAL MAINMESH(1000,1000)
COMMON /MINE/XDIM, YDIM, MAINMESH
INTEGER XDIM, YDIM
INTEGER I,J
SUMVALUE=0.0
DO 1=1,XDIM
DO J=1,YDIM
SUMVALUE= SUMVALUE + MAINMESH(l,J)
END DO
END DO
RETURN

END
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This set of routines could be compiled and inciuded in the same library as the
NEWMESH routines. A set of INTERFACE descriptions would then be included in the
header file.

Since MAINMESH is shared by these two modules (and only by them through the
unigue COMMON/MINE/, it could be said that the module NEWFUNCS has “inherited”
the matrix from NEWMESH. Further, the subroutine call definitions which were
originally created for a NEWMESH “header” file could be incorporated with the
INTERFACE definitions for the subroutine calls in NEWFUNCS resulting in a single
“header” file called NEWFUNCS. The result would be an apparent “inheritance” of the
NEWMESH functions as well as the data from the example we started with.

The object-oriented view of “inheritance” is much broader and more flexible, but the
idea of building definitions for objects from the definitions for other objects is a primary
technique in object-oriented design and programming. Think of this process as being
the next step beyond the manner in which we now program, building routines out of
subroutines and functions and then using these routines as building blocks for more
complex routines. The major difference in object-oriented programming is that instead
of normal Fortran or C routines we use as the basic building material self-contained
(encapsulated) object definitions which possess the properties which we described

above.
B.4 Object-Oriented Design

Once the object-oriented programming paradigm is in place, along with the compilers
and other tools to improve programming productivity, the next step is to utilize these
concepts as a basis for the system design process itself. Characteristically, this means
approaching the design from a very high level, first defining the nature of data and
processes in an almost philosophical manner and from that specifying the object
definitions (or “classes”) which will best express the high-level view of the system. This
process is quite orthogonal to the traditional methods used for complex Fortran and C
programs in the past and takes a while to reach a point where the procedures are

_intuitive.

Experience with object-oriented design and C++ implementation has demonstrated that
this methodology is quite powerful and results in systems which are more easily
implemented, understood, and maintained. Properties such as quality and efficiency in
the resulting system are vastly more easy to assure in object-oriented systems.
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ADOM Canada/ENSR

A similar effort to the RADM model development was undertaken by the Canadian
government with ENSR to develop a regional acid deposition model. The model that
was developed is called the Acid Deposition and Oxidant Model (ADOM) (Venkatram ef
al., 1992). It shares many of the same characteristics (e.g. basics of model formulation)
as RADM, with some important differences. Two of the more notable differences is the
chemical mechanism used (Atkinson and Lloyd, 1984 versus the RADM mechanism),
and the treatment of cloud processes, including aqueous phase chemistry. Another
difference is that the RADM photochemical model was tightly linked to the MM4
meteorological model, where as ADOM is not. Instead, ADOM has used meteorological
fields developed by the Canadian Meteorological Service model, though is not tightly
coupled to any single model. One of the important differences between ADOM and
other regional models is its treatment of both cumulus and stratus clouds differently.
ADOM (or its derivatives) has been applied in North America and Europe, looking at
both acid deposition as well as ozone control. ADOM and RADM were subjected to a
regional model intercomparison (EMEFS).

References
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Photochemical Smog,” J. Phys. Chem. Ref. Data, 13, 315-444.
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ADSO Models ARIA (France)

As an outgrowth of work being conducted at EdF (Electricite de France) in France, a
company, ARIA, was formed to further develop and apply not only the EdF air quality
models, but others as well. Such models include both meteorological models (both
diagnostic and prognostic) and dispersion models. The models have been engineered
to be more readily coupled, particularly between the meteorological models and the
dispersion models. The application package is called ADSO (Atmospheric Dispersion
Simulation Objects). These models are engineered to share the same 1/O structures.
The GUI is basically 2D with MOTIF. NCAR Graphics is used for visualization.
Recently, the models have been linked with savi3D for visualization. The visualization
packages can also be used for investigating atmospheric measurements as well. More
limited versions of the package for PCs have been developed primarily serving those
with limited needs or for educational purposes.

The primary meteorological models are MINERVE™, a diagnostic model, HERMES™, a
regional scale prognostic model, and MERCURE™, a smaller scale CFD-type code.
HERMES can use, optionally, a variety of turbulence closure models. At present, it does
not have FDDA capabilities, and is hydrostatic. MERCURE is a descendent of CFD
codes, and includes more detailed treatment of physical processes, such as turbulence,
at smaller scales. It includes both K-L and K-e turbulence parameterizations.

Dispersion models included in the ARIA ADSO family includes DIFBOU™, TRAMES™,
HERMES Disp, MERCURE and SPRAY™. DIFBOU is a Gaussian puff model using 0
or 1D meteorological data. TRAMES is a 3D Puff model. HERMES Disp is a 3D
Eulerian model, but is not applicable to small scales. MERCURE is an extension of the
MERCURE flow model. SPRAY is a Lagrangian Monte Carlo dispersion model.

The ADSO models have been applied in a variety of settings, and the results presented
in the scientific literature. The coupling between the models, and the use of a common
I/O structure would classify these models as a preliminary modeling system. However,
they do not include a detailed emissions model, nor regional photochemical capabilities.
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ARPS CAPS

The Advanced Regional Predictions System (ARPS), Release 3.1, is an atmospheric
modeling code developed by the Center for Analysis and Prediction of Storms (CAPS).
The code is a full-physics, general-purpose mesoscale atmospheric model (CAPS,
1992). Even though its primary focus is on severe thunderstorms and tornadoes, we list
ARPS in this section of pre-CMS systems because of its unique computational features.

Because of ARPS’ coding style, the system has been welcomed into the computer
science community as a framework for developing and testing compilers, translation
tools and automated differentiation techniques. In fact, unique to ARPS is the use of
structured finite difference operators, which not only preserve the formal structure in the
code of the governing equations of fluid dynamics, but also expose the parallelism
inherent in them (but typically masked by the solution algorithms). Thus, the code
becomes naturally scaleable for general classes of parallel machines. In addition, this
operator-based solution methodology has been shown to reduce development and
debugging time substantially relative to more conventional methodologies.

In fact, ARPS was developed specifically for broad classes of scaleable-parallel
architectures (Droegemeier ef al., 1993). Sabot ef al. (1993) took ARPS and ported the
entire application to a massively parallel computer, the Connection Machine system.
This allowed the model to simulate well ahead of the evolving weather.

References

CAPS (1992). ARPS Version 3.0 User's Guide. Center for Analysis and Prediction of Storms, University of
Oklahoma, Norman, OK.
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Canadian Air Pollution Modeling Efforts

The Canadian air pollution modeling effort is spread across government, academic, and
private sectors. The following is far from a comprehensive survey of the field.
Highlighted are several models and model components that could have particular
significance in the development of a comprehensive modeling system for reasons that
are explained in the descriptions. While Canada does have active modeling efforts in
the small scale, models used in the mesoscale and up for air quality applications (not
climate) are described here.

Program in Support of NO,/VOC Management Plan

Under Canada’s NO,/VOC Management Plan, three areas have been identified for

significant modeling efforts. These are the lower Fraser Valley, the Windsor/Quebec
corridor and the southern Atlantic Region.

In the lower Fraser Valley, several modeling efforts are underway with involvement by a
number of researchers including Dr. Steyn of UBC and Dr. Hedley of NRC. The urban
airshed model (UAM) is being adapted for use with RAMS and with MC-2 (which will be
discussed further below).

The Canadian Institute for Research in Atmospheric Chemistry (CIRAC) is managing a
model intercomparison project to assess the performance of several models to simulate
tropospheric ozone in the Windsor/Quebec corridor. Performance is being assessed
based on the EMEFS data sets. The first case is in the Summer of 1988 when high
values of tropospheric ozone were experienced. The second case is in the Fall of 1991
when the levels of tropospheric ozone were much lower. The models being assessed
include: ALOM, ADOM, ADOM/GESIMA, and MC-2/ADOM. Since these models are
being considered for use in scenarios to assess potential control measures for
tropospheric ozone, which is a major Canadian issue as well as one of the issues
driving the development of a comprehensive modeling system, they will be briefly
discussed here.

The AES Lagrangian Oxidants Model (ALOM) is a Lagrangian model which was
developed by the Atmospheric Environment Service about a decade ago (Olson et al.,
1979) and which has had a long and illustrious record in doing air quality work. It is
most lately being applied to simulations of tropospheric ozone in the Windsor/Quebec
corridor.

In the 1980s, Canadian effort focused on the development and validation of the Acid
Deposition and Oxidants Model (ADOM) for assessing acid deposition. This model is a
sister model to RADM and has been the subject of extensive intercomparisons with
RADM and with a special data set collected in the extensive EMEFS field studies. More
recently, this model has been coupled by the Ontario Ministry of the Environment and
Energy to GESIMA, a German mesoscale model, for use in smaller scale applications.
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Recently, AES is beginning to use numerical weather prediction models more
extensively as “drivers” of air quality models. This is, of course, only possible when the
model has a sophisticated boundary layer which aliows realistic simulation of pollutants.
The latest generation meteorological driver is represented by MC-2, which is described
more fully in the following table. For the evaluation, MC-2 is being coupled to the

chemistry code from ADOM.

In the southern Atlantic Region, AES is also planning to apply the MC-2 model linked to
ADOM chemistry to simulate the tropospheric ozone levels in the region.

Summary of the MC-2 Model
(courtesy of R. Benoit)

The MC-2 model is a Canadian mesoscale community model which is user friendly and
can be interfaced with dispersion models. It has the following characteristics.

Dynamics:
e Fully compressible Euler equations

e Horizontal Cartesian coordinates on polar stereographic projection of sphere;
vertical terrain following (modified Gal-Chen) coordinate
e Helmholtz equation on perturbations of log [pressure (t+Dt)]. Adaptive ADI

scheme
Nesting of lateral/upper boundaries for all prognostic variables (sponge zone)

Variable resolution in the vertical, 3D staggered finite differences

time levels (t-Dt, t, t+Dt) + filter + “off-centering” (epsilon = 0.1)

Semi-implicit time scheme that handles both acoustic and gravity oscillations.
Uses an isothermal temperature reference profile

3D semi-Lagrangian scheme. Truncated tricubic spline

Horizontal and vertical staggering with second order finite differencing
Horizontal diffusion (-) time-implicit on horizontal and vertical velocity,
temperature, pressure, and humidity

Physics:
e Essentially the same as in RFE, SEF (operation models), and GEF
e Plus more recent options (MC-2 = numerical laboratory for physics)
e Surface physics options:
- (land: force-restore/ocean: fixed SST + Charnock variable drag)
- Canadian Land Surface Scheme (CLASS): soil, vegetation, and snow layers
e Prognostic turbulent kinetic energy (TKE)
e Shallow moist convection; orographic gravity wave drag
e Convective scheme options:
- Kuo scheme
- moist convective adjustment
- Frisch-Chappel mesoscale convective scheme including downdratfts
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» Explicit condensation options:
- large-scale supersaturation removal
- prognostic cloud water scheme (Sundqvist, 1989) with integrated convection
- warm and cold processes cloud scale microphysics

¢ Advanced radiative computation (solar + | R)

Program in Support of Emergency Response

The Canadian Meteorological Center in Dorval, Quebec, is one of the WMO Emergency
Response Centers globally. The model that is used is based either on objectively
analyzed data or on the standard weather prediction models used by the weather
service coupled with a semi-Lagrangian tracer code. In the ATMES study which
evaluated such models based on the Chemnobyl data, an earlier version placed 5th
worldwide (Pudykiewicz, 1991).

More recently, there has been research to move such emergency prediction to the
mesoscale. Two approaches are being pursued: reducing the operational scale of the
weather prediction models to 25 km and developing a simplified boundary layer model,
mesoscale Boundary Layer Forecast Model (BLFMESO), for specific application to
emergency response (Daggupaty ef al., 1994).

Program in Support of Air Toxics

A similar modeling system to that being used for emergency response is being used to
simulate the global transport of air toxics. Simulations of organochlorine transport to
the Arctic are underway. One major problem with the modeling of persistent organic
poliutants is the lack of credible emission inventories. In order to make some progress
internationally on the establishment of such inventories, Canada has established the
Canadian Global Emissions Inventory Center (CGEIC). This center has collaborative
programs in place with several other countries to produce emission inventories suitable
for modeling.
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CIT Airshed Model Carnegie Mellon University &
California Institute of Technology

The CIT model is a descendent of the Caltech gas-phase photochemical air quality
model developed, originally, at the California Institute of Technology in the late-1970s
and early-1980s. Later, the ability to track the formation and transport of aerosol nitrate
was added. Due to its use as a research tool, other changes to components of the
model were updated to reflect our increase in knowledge about the processes
governing the dynamics of poliutants, such as adding the chemistry of methanol and
other species to the original Caltech mechanism, use of an alternative chemical
mechanism (e.g., the LCC chemistry), and use of a resistance-based, land-use
dependent deposition scheme. Each of these improvements strengthened its scientific
foundation, and kept it at the forefront of model capabilities.

Photochemical models simulate the physical and chemical processes affecting the
dynamics of compounds in the atmosphere. Mathematically, the pollutant dynamics are
described by the species conservation equation:

_Z_‘ft.-__*_ Vo(uci)= DVic, + R;(Cl,cz---c,,,T)=S,.(t)

where ¢; is the concentration of species i, u is the velocity vector, D is the molecular
diffusivity of species i in air, Rj is the chemical production, T is temperature and S;j is the

(elevated) source rate of i. Boundary conditions govern the concentrations and pollutant
flux into the region of interest. In practice, an approximation to the above set of
continuous, differential equations is solved using finite techniques solving for spatially
averaged concentrations. Likewise, temporal averaging is used to allow the calculation
of the fluid dynamic transport to be computationally tractable since the flowfield is highly
turbulent. Temporal averaging of the advective flux leads to parameterization of the
transport into a term describing bulk motion of the air (e.g., mean winds) and a
diffusive, turbulent flux (e.g., K-theory approximation):

where is the temporally averaged velocity vector, u' is the turbulent fluctuating velocity,
cj is the temporally averaged concentration of species i, ¢i is the instantaneous

fluctuating concentration and K is the second order diffusivity tensor. This is a
turbulence closure parameterization. In the CIT model, K is taken to be diagonal (see
discussion below). Similarly, spatial discretization, and the chaotic nature of turbulence,
lead to the introduction of a spatially averaged concentration that would be found over a
number of realization of the nearly same experiment (i.e., where all the mean variables
such as wind velocity are the same), which is called the ensemble average, <c >. The
resulting final equation, called the Atmospheric Diffusion Equation (ADE) is a statement
of the conservation of species for an ensemble, grid averaged, field.
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As implemented in the CIT model, the horizontal boundary conditions are:

[ei) = K o V(e e =) o ;.A;so

—V(c,-)0n=0 uen>0
where <ci>b is a specified boundary concentration.

The vertical boundary conditions are
and

where Vg,i is the deposition velocity of species i, Ej is the emission rate, and H is the top

of the modeling region. Unlike other models, the choice here has been to set a no-
gradient top boundary condition. In essence, this is derived from the view that the best
estimate of the local concentration just above the modeling region is the current
prediction at the top of the modeling region. This makes it insensitive to setting an
arbitrary, often very high, upper boundary condition. Instead, the top of the modeling
region must be set well above the top of the mixed layer, so the concentration gradients
should be small and the absolute concentrations of most species should also be
relatively small. This mode of operation is particularly useful for control strategy
calculations because an arbitrary choice of boundary conditions does not impact the
results severely.

Depending on the topographic relief of the modeling region, numerical implementation
of the ADE can be complicated. Solution is simplified by using a terrain following
coordinate system. Amongst other aspects of the transformation is the addition of off-
diagonal terms in the eddy diffusivity tensor, K. It has been implicitly assumed, and can
be shown for all but very rugged terrain, that those off-diagonal terms are small for
urban modeling.

Solution of the atmospheric diffusion equation for systems such as urban smog and
acid deposition is computationally demanding. Standard techniques will generally be
inefficient, and often inaccurate. The CIT model has adopted and refined peer-reviewed
numerical techniques that are both accurate and fast (economical).

Given the wide variation in time scales of the various physical and chemical processes,

and the structure of the ADE, the CIT model employs operator splitting. These methods
are ideally suited to deal with this problem because they allow specialized techniques to
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treat individual components of the original equation. The basic elements of the splitting
process are the use of operators, L, that describe horizontal transport:

-Z—i:-vﬂ euc+V, eKV c=L,c
vertical transport:
Z_ -éouc+"é '-O:—Lc
ot & & & C
and chemistry and emissions:
oc
5 =R+S=Lcc

The horizontal transport operator can be further decomposed into operators treating
transport in the x and y direction. If Ay, Ay, Az, and A are numerical approximations to

the transport and chemical operators, then a solution can be obtained from the
sequence:

Cotl = Ay Ay Ay Ac (2Dt) Az Ay Ag cn-1

where n is the time level and Dt the numerical time step.

In the original implementation of the Caltech model, the vertical transport operator was
independent of the others, as shown above. However, the time scale for the vertical
diffusive transport is very short during the day in the mixed layer, and is comparable to
the chemical time scales of many components. Also, the solution of a diffusively-
dominated process (such as vertical transport in the mixed layer) has a similar
exponential structure like chemical decay. Thus, in later implementations of the Caltech
model, the vertical transport operator was combined with the chemical operator,

leaving:
Cotl = Ay Ay Az (2D1) Ay Ag C1

This structure allows very fast and accurate solution techniques to be applied to solve
the advectively-dominated horizontal transport, and a separate technique for chemical
production and decay.

Advective dominance in the horizontal transport leads to the solution having hyperbolic
characteristics. Numerical solution leads to the production of spurious waves
(dispersion) and loss of detail (diffusion). This is a classic problem in computational fluid
dynamics, and a number of specialized techniques have been developed. Of those
tested, the Chappeau function-based finite element technique was shown to be both
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accurate and fast, and is used in the CIT model. More recent tests have further verified
its characteristics.

Most of the computer time involved in solving the ADE is consumed by integrating the
chemical production and loss of each species. This is due, in large part, to the stiffness
of the system of coupled differential equations. Tests showed that the implicit, hybrid,
asymptotic, exponential solver of Young and Boris provided significant efficiency
advantages over other techniques for solving stiff systems of equations.

An indication of the computational effectiveness of the techniques chosen is that they
have been adopted by much more recent models. As specified above, the “old” CIT
model proved to be a reliable and accurate tool for investigating and elucidating the
dynamics of pollutants in the atmosphere.
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EUMAC Modeling System European Modeling System,
University of Cologne and others

The centerpiece model of the European modeling system development effort is the
EUMAC project. It is a combination of a photochemical transport model, a
meteorological model and an emissions model, linked together to facilitate regional
modeling. The photochemical model is a descendent of RADM. The meteorological
model is a descendent of MM4/5, and has both FDDA and non-hydrostatic capabilities.
MMS5 and RADM are described in more detailed elsewhere in this appendix. Both of the
models, as used in the EURAD system, include updates, primarily in the treatment of
the physics. The emissions model, and emissions inventory preparation procedures in
general, are not as detailed as comparable systems in the United States (e.g., in
comparison with GEMAP or the large number of source classes and estimation
procedures used for inventory development here). This is primarily a reflection of the
longer term, historically more intense regulatory climate in the US. A number of recent
studies in Europe are aimed at developing more detailed inventories, which in turn will
drive the emissions model development.

A key feature of the EURAD system is that it is a linked system, such that when one
changes the domain or grid size used, it is consistently and readily treated by all three
system components. Thus, there is less problem with making sure that all changes are
made consistently throughout the model application, and significantly less effort is
required for new applications.

The EUMAC model has been applied to a number of regional domains in Europe,
primarily for scientific study. It has been used in a one-way nesting mode, though it
currently does not have two-way nesting capabilities for the photochemical modeling
portion. At present, it does not have a plume-in-grid capability as well.
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EWB SSESCO

The Environmental WorkBench product (EWB) from SSESCO is an extremely easy to
use visualization and analysis application targeted at environmental data. It is aimed at
putting sophisticated interactive visualization capabilities directly in the hands of the
scientist or engineer working with the data, without the need for a computer support
person. It is distinguished from data flow products like AVS in that it provides a ready to
use interface without any network programming required. The EWB currently has
numerous users in the fields of meteorological research, air quality work, and
groundwater remediation. Besides allowing the user to interactively expiore their data
sets, it also provides a highly effective means for communicating their insights to others.
It has been used with great success in a courtroom setting for a Superfund case to
communicate complex 3D information about plume structure and movement. The EWB
also serves as an integration platform for models and additional analysis facilities.
SSESCO is currently installing real-time meteorological modeling systems based on the
EWB at two sites, one for emergency response purposes at a DOE laboratory and one
used by an electrical utility for current routing calculations.

Perhaps the most important attribute of the EWB is its user interface. By adopting an
object oriented approach, it achieves a synthesis of sometimes contrary attributes: easy
to learn, efficient for the experienced user, and logically extensible. This is
accomplished in part by using a very “flat” user interface. That is, a large part of the
functionality is always readily accessible to the user without “diving” into menus and
searching. Customers frequently report back at the ease and quickness in getting new
users up to speed.

The EWB is targeted specifically at environmental applications. By staying focused on
this market, development efforts are tailored to its specific needs. Examples of this
include unsurpassed support for handling of nested grid models, and the optional use
of meteorological station model style wind arrows. Another example is the support for
discrete observational data integrated with model generated data such as gridded or
particle model outputs. The EWBs frame manager makes it easy to view together
multiple data sets from different sources with asynchronous, non-uniform time steps.
For example, one could pull together topography and land us data with outputs (and
inputs) from emissions, meteorological, and photochemical models, along with sets of
real data from meteorological and air quality monitoring systems. The time stepping
control system allows the user to step though time in an interactive rendering mode
which employs a memory management scheme so that there is no requirement that all
data over time fit into memory. They can also save sequences of images for use in third
party animation tools.

Systems currently supported by the EWB include: IBM RS/6000, SUN, and Hewlett
Packard workstations, and OS/2 on the PC.
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System features include:

Random access file structure using the netCDF based public domain MeRAF file
system with support for gridded, discrete (non-grid-based observation), and particle

types

Support for geo-referenced or Cartesian coordinate systems

Object oriented graphical user interface (GUI) that is very easy to use

Tools for converting model and observational data sets and data writers to netCDF
Interactive rotation/translation of scenes in 3D space

Time sequencing controls to step forward/backward, animate sequentially, or go to a
chosen time step; including multiple asynchronous or non-uniform time steps

Interactive slicers to select cross sections through 3D data sets

- geo-referenced slicer that gives feedback in geographic units dependent on
the current coordinate system

- ijk slicer based on the indexing information of the 3D grid

- arbitrary slicer to slice along non-orthogonal angles and at varying resolutions

Display operators available on the slices

- contour lines with selectable contour levels

- color shading by data value with variable transparency level

- arrow and streamline representation for vector quantities

- positional reference fines at user selected intervals

- color coded shapes at each grid node

Multiple 3D iso-surfaces at selected parameters and values with variable
transparency

Display of particle positions with coloring by type, height, and source

Display of discrete data using colored spheres and labels for scalar data and arrows
for vectors (with arrowheads or meteorological style)

Multiple user definable color maps to which iso-surface and colored field shading
may be separately assigned

On screen annotation for generation of report ready figures
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* Image export in any of the common image formats (gif, tiff, encapsulated postscript,
etc.)

* Graceful handling of missing or bad data values by all the graphics rendering
routines ‘

* Automatic data synchronization to allow automatic screen updating as new data
arrives in real time from a mode! or set of sensors
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FAST UAM | ENVIRON International Corporation

In photochemical grid models, typically 80 percent of the CPU time is spent numerically
integrating the time evolution of (solving) the chemistry. The desire to increase the
complexity of photochemical mechanisms will tend to push this figure higher. Whilst
improvements in computer performance continue at an impressive pace, the relief
provided by the arrival of each new generation of computers seems only temporary
because the gains are soon eroded by expanded modeling domains, nested-grids,
higher resolution, etc. Thus, computer time seems always to be at a premium and the
need for significantly more efficient chemistry solvers seems likely to remain for the

foreseeable future.

Chemistry can be speeded by using parallel computers if the solver/model is developed
to exploit the parallel architecture. A potential drawback to this approach is that the
resulting code may be tailored to a specific computer architecture and only run
efficiently on a limited number of rather expensive computing platforms. Development
of a fundamentally more efficient chemistry solver is a more attractive approach since it
yields benefits on all computing platforms. ENVIRON has developed a highly-efficient
chemistry solver that is based on an “adaptive-hybrid” approach. Relative to the
standard chemistry solver in UAM-IV and UAM-V, our approach results in about a ten-
fold speedup in the chemistry and an overall speedup in the model of 3 or 4 times. An
attractive feature of this solver is that its efficiency relative to other solvers should
improve further for more detailed photochemical mechanisms. Model performance with
the ENVIRON fast solver is very similar to the standard version of UAM-IV and its use
does not change any conclusions that would be drawn about model performance
relative to observations or the effectiveness of control strategies.
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GEMAP Radian/Alpine Geophysics/CMU

The Geocoded Emissions Modeling and Projections (GEMAP) system was developed
by Radian Corporation under the joint funding of SARMAP and LADCO. It prepares
gridded, hourly, and speciated emission estimates for use by photochemical models.
The GEMAP system may be used to prepare emissions estimates for State
Implementation Plans (SIPs), urban- and regional-scale air quality models, and air

quality management plans. GEMAP has been built around SAS® and ARC/INFO® which
are state-of-the-science software packages for manipulating data. Also included in
GEMAP are MOBILE (US EPA's Fortran model for computing mobile source emissions
factors), EMFAC (California Air Resources Board's Fortran model for computing mobile
source emissions factors), and BIOLCM (US EPA's model for estimating adjustment
factors due to leaf canopy effects).

GEMAP consists of eight separate models for computing emissions estimates. Models
for point, area, motor vehicle, and biogenic sources are used to produce baseline
emission estimates for these four source types. The Grid Definition Model prepares the
domain modeling grid for spatial allocation of emissions estimates that are generated
by other GEMAP models. The Speciation Model applies split factors specific to a VOC
chemical mechanism to speciate the criteria emissions estimates that are computed by
the five, GEMAP emissions estimates models (Point Source Emissions Estimates
Model, Area Source Emissions Estimates Model, Crude Oil Storage Tank Emissions
Estimates Model [COST], Biogenics Emissions Estimates Model [BIOEM], and the
Motor Vehicle Emissions Estimates Model [MoVEM]) into the lumped chemical
groupings that are required by an air quality model. The Projections Model is used to
project baseline emissions estimates to future years. Finally, the Uncertainty Model is
used to modify emissions estimates to reflect uncertainty in the emission estimates.

The GEMAP Grid Definition Model generates the grid system cell structure; that is, the
emissions modeling domain. The GEMAP Grid Definition Model is built around ARC/
INFO, a geographical information system (GIS). Use of ARC/INFO enables the user to
generate the emissions modeling domain grid structure or other relevant geographical
data as /ayers or coverages of information. Spatial data are represented as features
(points, lines, or polygons), with both locational and thematic (attribute) components —
attribute data may include population and housing counts, survey data, plant species,
etc. The locational data pertain to the geographical location of a feature on the Earth's
surface and are associated with an acceptable coordinate system, such as the
Universal Transverse Mercator (UTM) coordinate system. Thus, lengths, perimeters, or
surface areas of a feature can be calculated while keeping the feature-associated data
in spatial relation with other geographical data.

The GEMAP Point Source Model uses state-supplied annual-average, average-day,
and/or day-specific emission estimates to compute gridded, hourly adjusted, pollutant-
specific point source emission estimates using a combination of SAS- and ARC/INFO-
based processors. Please note that the GEMAP Point Source Model is not a true
emissions estimates model. It utilizes emissions estimates prepared by an external
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entity to generates gridded, hourly, criteria emissions estimates. During the emissions
estimation process, the GEMAP Point Source Model can account for day-specific
emissions events, regulatory control programs (control efficiency, capture efficiency,
and rule-effectiveness), and source specific operating parameters and schedules.

The GEMAP Area Source Model uses state-supplied, county-wide annual-average,
average-day, and/or day-specific emission estimates to compute gridded, hourly
adjusted, pollutant-specific area source emission estimates using a combination of
SAS- and ARC/INFO-based processors. Please note that like the GEMAP Point Source
Model, the GEMAP Area Source Model is not a true emissions estimates model. It
utilizes emissions estimates prepared by an external entity to generates gridded, hourly,
criteria emissions estimates. During the emissions estimation process, the GEMAP
Area Source Model can account for day-specific emissions events, regulatory control
programs (control efficiency, capture efficiency, rule penetration, and rule-
effectiveness), and area source specific operating parameters and schedules.
Furthermore, the GEMAP Area Source Model can aid in the development of the spatial
surrogates that are used to allocate area source emissions estimates from a county-
wide basis to a cell-by-cell basis.

The GEMAP’s Motor Vehicle Emissions Estimates Model (MoVEM) calculates gridded,
hourly, link-specific emission estimates. MoVEM uses user-supplied vehicle activity
data and US EPA emission factors (generated by MOBILE, or for California, generated
by EMFAC) to estimate emissions. The activity data and emission factors are combined
to obtain the final emission estimates. MoVEM contains the MOBILE model to calculate
the necessary hour-specific emission factors for all states but California. A separate
model, Cal-MoVEM, is under development, and it will be specifically used to estimates
mobile source emissions for the state of California. A variety of activity data are needed

from the user and include:
« Vehicle miles traveled (VMT) for a given road or region;

« The percentage of VMT accumulated by each of the MOBILE vehicle
classes; and,

. Average vehicle speed over the road or in the region.

One of the principal design features of MOVEM is its ability to combine different types of
vehicle activity data in order to estimate emissions. MOVEM can accept the following

types of vehicle activity data:
« Urban-scale transportation model output;
- Regional or statewide transportation model output;

. Small-scale polygons of VMT, such as public land survey quarter section; and
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* Countywide estimates of VMT.

Many urban regions included in modeling inventories have detailed link-specific VMT
and speed estimates available from existing transportation models. The estimates are
either daily, hourly, or peak period estimates. MoVEM assigns the activity data to the
geocoded network and calculates the link-specific emission estimates, which are
aggregated into gridded, hourly estimates.

However, the emissions modeling domain often extends beyond the urban boundary
and beyond the limits of urban transportation models. In areas beyond the urban
transportation model, activity data are-usually available either from regional or statewide
transportation models or from countywide estimates of VMT. Often, the countywide
estimates are disaggregated by area type (urban, rural, etc.) and road functional class
(interstate, arterial, collector, local road, etc.). In other cases, rural VMT is partially
accounted for by regional or statewide transportation models that account for VMT on
the higher road functional classes. MoVEM is designed to combine such regional VMT
estimates with detailed geocoded urban or statewide transportation networks to
calculate gridded, hourly emission estimates. The final output of MoVEM is a data set of
emission estimates by grid cell, hour, pollutant, process, and technology type.

The GEMAP Biogenic Emissions Estimates Model (BIOME) computes gridded, hourly
adjusted, pollutant-specific biogenic emission estimates using a combination of SAS-
and ARC/INFO-based processors. BIOME utilizes satellite imagery-based or other land
use/land cover data and species-specific biomass and emission factors to calculate

emission rates at standard conditions (30°C and 800 pE/mzlhr). BIOME also spatially
allocates and temporally resolves the normalized emissions estimates for each hour of
an episode day using gridded meteorological data. BIOME generates hourly-specific
biogenic adjustment factors through the application of BIOLCM, an US EPA mode! that
computes biogenic adjustment factors due to leaf canopy effects, temperature,
humidity, solar intensity, and wind speed.

The GEMAP Speciation Model computes the chemical mechanism-specific emissions
estimates based on the criteria emissions estimates supplied to it by the Point Source
Model, the AREAS Source Model, BIOME, and MoVEM. The GEMAP Speciation Mode!
splits the TOG component into the lumped model species classes that the air quality
model uses. It also splits NOy into NO and NO,, and SOy into SO,. CO and PM are

simply converted from mass-based values to mole-based values. The GEMAP
Speciation Model currently supports the CB-IV and SAPRC chemical mechanisms.
Finally, the GEMAP Speciation Model reformats the resulting speciated emissions
estimates into a form the can be used by the air quality model. It currently supports the
UAM, RADM, and SAQM air quality models.
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GEMS , cMu

The GEMS (Geographic Environmental Modeling System) prototype consists of 75,000
lines of C++ code implementing a total of 150 classes. The development of the system
was greatly aided by the use of the OMT modeling methodology for analysis and design
and by the ability to reuse components from existing systems and class libraries. The
GEMS user interface component and the visualization routines are implemented using
X and the OSF/Motif tool kit. Motif widgets are accessed from C++.

GEMS was developed in a constant dialog with end users and domain experts in a
prototyping process similar to the one we envision for the development of the CMS
system. The development of the GEMS User Interface, for example, proceeded in
several stages, each of which produced a prototype version built on the knowledge
gained from the previous prototypes. The first iteration of the User Interface consisted
of a set of sketches done by the graphical designer working directly with the client. The
designer created a set of sketches (storyboards) illustrating a walk-through of what the
eventual user of the GEMS system would see.

The storyboards were presented by the designer as part of the first prototype and the
response of the clients was very positive. Both the other members of the development
team and the clients were very impressed with the quality of the design produced by a
professional designer as compared with their experiences in previous software
development projects involving GUIs built only by the computer scientists.

The problem was to get the conceptual design, which existed only as a series of
sketches (artists interpretation), implemented. The chosen platform for the final system
was X11 and the OSF/ Motif tool kit. The development team had little expertise in GUI
development, and X/Motif represented a sharp learning curve. It was decided that the
graphical designer would continue making his ideas more concrete by using an
animation tool, MacroMind Director, with which he was familiar and which was
supported by the Design Department. The second prototype of the User Interface
presented to the client(s) consisted of an animation running under the MacroMind
Director program which allowed navigation through the entire User Interface but without
any functionality behind the scenes.

In an ideal world, it should be possible to generate the code for the final user interface
directly from the MacroMind animations; however, since MacroMind Director is available
only on the Apple Macintosh and the rest of the GEMS system was implemented on
X11 Unix machines, there was a conversion problem. In fact, MacroMind director does
not create any executable code at all, and for this reason the animations became a set
of executable requirements for the GEMS user interface — the user interface would be
built to match the look and feel of the MacroMind animations, but would otherwise start

from scratch.

Since we could not directly make use of the MacroMind Director work, we tried to ease
the pain by making use of a high-level interface building tool kit. We spent considerable
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development effort attempting to make use of the Interviews system, developed at
Stanford University, to develop the GEMS interface. We ran into several problems with
the InterViews system, including the lack of consistent documentation, disparities
between the documentation and the implementation, lack of certain important pieces of
functionality that we required, and compatibility problems between the InterViews code
and the C++ compiler used for the rest of the system. We did implement a prototype
user interface using the InterViews tool kit but finally decided to take the lessons
learned from this experience and move to using the Motif tool kit directly instead of
through InterViews.

Recent trends in the area of user interface development systems have been toward
tools that allow the layout and the look-and-feel of a user interface to be created in a
graphic package and then transformed directly into executable code and used in the
final system. These developments can greatly simplify the process of user interface
building, and will allow the effort currently spent on implementing the user interface to
be redirected toward the creative aspects of making an interface pleasing and
consistent. We feel that the problems we encountered with InterViews were due mostly
to the immaturity of the concept and the product itself. We definitely feel that user
interface builders and libraries of interface classes will become more prevalent and
useful as the technology progresses.

Figure 3-3 in Chapter 3 of the CP shows the GEMS user interface, which is divided into
four main windows: the Toolbox, the Main Map Window, the Overview Window, and the
Graph Window. The Toolbox is where most of the interaction between the user and
system takes place. It consists of a set of fools that provide a way to perform various
kinds of analysis of the data available to the system. The Map Window is the central
part of the display system. The data that makes up the map is divided into a series of
layers. The data in each layer can have its own coordinate system and each layer
provides conversions between the different coordinate systems in use. In this case the
TIGER (Topologically Integrated Geographic Encoding and Referencing system) data is
stored in Latitude/Longitude coordinates while the CIT Airshed Model grids are
registered in UTM (Universal Transverse Mercator). The User Interface performs the
necessary transformations between the coordinate systems used by the different layers
and the coordinate system of the display. The map view tool contains a series of toggle
buttons that specify whether a given layer is visible or not.

The first thing a user must do after starting up the system is choose a scenario from the
list of available scenarios (the ones the system has data available for). In this case, the
choice is by city. After the user has chosen the city to work with, the TIGER data for that
city is loaded into memory and displayed on the Main Map Window. The initial TIGER
display shows the chosen area, divided by county boundaries (as defined by the US
Census Department). Clicking with the mouse button in the Main Map Window will
select a county and display its name in the Status Line at the top of the window.

The Overview Window provides a way to zoom in on different portions of the map that
may be of interest. Since the TIGER data is stored in vector format, the system can
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magnify the data to any desired zoom level. The Find tool provides an Information
button which displays a short description of the object(s) that is currently selected on
the Map. Both the Name and the Information fields are common to all objects that make
up the system, and the descriptions that each provides is set up by the database (in this
case the TIGER database) when the object is first created.

Another tool from the Toolbox, the chemical lab tool, provides access to data about
different Air Quality and Meteorology measurements (in this case those that make up
the inputs to and outputs from the CIT Airshed Model). The information in this database
is registered to a grid that overlays the area in question (Los Angeles in this case) and
forms another layer on the Map. The user can now choose a portion of the Map (either
by selecting an object from the TIGER layer(s) or dragging over a series of grid
squares) and display Air Quality information for the chosen region. On the chemical lab
tool, the user must select a date for which he wants the data displayed and must
choose the chemical species he is interested in from the list of those species available
from the database. The system takes this information and creates what is called a Map
Overlay, another layer that sits on top of the TIGER and Airshed Grid layers. This layer
consists of a series of Computation Grid objects, each of which contain values for a
certain data element over a certain period of time. Each Grid is assigned a color
according to the scale displayed at the right of the Overview Window, with blue
representing low concentrations and red being high concentrations. To get a different
view on this same data, the user might choose the Graph option under Output in the
chemical lab tool and would be presented with a plot in the Graph Window showing the
concentration of the chosen chemical (averaged over the chosen set of Computation
Grids) throughout the chosen day. The chemical lab tool and the underlying data
representation is designed to be very extensible so that it would be possible to
incorporate a visualization system such as PV-Wave or AVS, and (given sufficiently
powerful graphics capabilities) be able to create a 3D display of perhaps an ozone
cloud over this same region of Los Angeles.

Another important aspect of the system is the capability to save any Plot or Map
generated from the chemical lab, either for later review inside the GEMS system or for
use outside the system. Plots can be saved as Postscript images or in the formats of
several popular plotting packages. Maps can also be saved as Color Postscript or in
any of several graphics formats. Since this system is intended for use in a regulatory
environment where there is a need to be able to defend and reproduce a given piece of
analysis, each output also contains a short report as to how the analysis was
generated. For example, a plot might contain information as to which CIT Airshed
Model files were used (including modification times and locations), how the plot was
computed, and what assumptions were made in the computation. For more complex
types of analysis, this report might also contain the relevant code that performed the
calculation so that the work could be reproduced and verified using a different system.
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Guideline Models UsS EPA

The most widely used air quality models in the US are the EPA-guideline Gaussian
plume dispersion models. These models consist of screening models (e.g., SCREEN2),
flat terrain models (e.g., ISC), and models that deal with simple complex terrain
conditions (e.g., RTDM, CTDM, COMPLEX 1). All of the EPA-guideline plume models,
along with their documentation, are available from EPA's SCRAM bulletin board.

The formulation of Gaussian plume models is very weak, assuming steady-state
meteorological conditions for each hour of the year. Consequently, the scope of
application for the models is very limited and they are only applicable to within a few
10s of km from the source over flat or rolling terrain. Not surprisingly, model
performance evaluations of the Gaussian plume models indicate that they can not
reproduce the observed concentration distribution for a given hour but do a better job in
reproducing the annual frequency distribution of hourly observed concentrations with a
conservative bias (tending toward overestimation).

The input parameters for regulatory applications of guideline plume models are set by
EPA's guidance. There are very few decisions for the user to make in their application,
mainly just the location of the receptors. Several user interfaces have been developed
for the EPA plume models, with the user-friendly BREEZE system developed by Trinity
Consultants probably the best known. Although the plume modeling systems are easy
to use with user-friendly front-ends, the scientific formulation of the models is very poor
with very simple description of transport and diffusion, almost no deposition, and
virtually no treatment of atmospheric chemistry.
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HYPACT ASTER

HYPACT -~ the Hybrid Particle and Concentration Model — represents a state-of-the-art
methodology for predicting the dispersion of air pollutants in 3D, mesoscale, time-
dependent wind fields. HYPACT allows assessment of the impact of one or multiple
sources emitted into highly complex local weather regimes, including mountain/valley
and complex terrain flows, land/sea breezes, urban areas, and other situations in which
the traditional Gaussian plume-based models are known to fail.

HYPACT, developed by ASTER, represents the next generation of dispersion modeling
systems. It combines the best features of grid-based Eulerian dispersion methodologies
with Lagrangian Particle Dispersion Modeling (LPDM).

HYPACT is a new generation model suitable for predicting the dispersion of pollutants
in complex mesoscale, time dependent meteorological regimes. Species can include
gases, radionuclides, and a spectrum of aerosol sizes. The 2D or 3D wind and
turbulence field is provided by RAMS (for forecasts) or an observational network (for
diagnostic application). HYPACT is ideal for regimes in which the assumptions
underlying Gaussian plume-based models are violated, such as highly sheared flows,
recirculating coastal and mountain/valley wind systems, urban heat islands, plume
fumigation and bifurcation. Sources can be single or multiple, instantaneous
(explosive), continuous, or time varying. Source geometry can include point, area,
mobile, and line sources of various orientations. The model domain can extend from an
area as small as an industrial plant site to hundreds of kilometers. The number of
particles released is limited only by available memory and can exceed tens of
thousands. Outputs displayed on interactive graphics terminals can include
instantaneous and maximum surface concentrations and dosages, trajectories, time
histories at arbitrary receptors, plume “centerline” values, streaklines, total path length
pollutant burden, animated plume visualizations and source/receptor statistics.

Although the RAMS code can directly compute the dispersion of any number of
“tracers” in an Eulerian framework, HYPACT has certain advantages because it
combines in one code the best features of both the Lagrangian and Eulerian dispersion
estimating methodologies. The advantage is greatest near a source region for tracers
when the source is small and unresolvable on the Eulerian grid. A comparable Eulerian
treatment would necessarily represent the source by a volume no smaller than one grid
cell, and would immediately begin diffusing the tracer in adjacent cells. A Lagrangian
approach, on the other hand, is fully capable of representing a source of any size, and
of maintaining a concentrated, narrow plume downwind of the source until atmospheric
dispersion dictates that it should broaden. In contrast, at large distances from the
source, where the tracer plume is typically broad and well mixed, representation of the
plume by Lagrangian particles can become inefficient due to the large number of
particles required to achieve a smooth characterization of the plume. The hybrid
Lagrangian and Eulerian approach used in HYPACT represents a tracer by Lagrangian
particles near the source, but converts particles to Eulerian concentrations where
appropriate at large distances downwind.
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HYPACT is a modular code with new features being regularly added. The turbulent
velocity components can be represented by either a first order Markov chain scheme or
a fully random walk scheme. The initial features include a level 2.5 turbulence closure
scheme. The dispersion and size sorting of heavy particles (typically diameters > 1
micrometer) are treated separately from gases and submicron aerosols. Liquid aerosol
evaporation, linear chemical transformation and radiological decay can be specified.
Dry deposition of gases and heavy particles are treated. Plume rise from buoyant
and/or momentum sources can be taken into account using a variety of approaches.
Concentrations are calculated using either a simple averaging over specified sampling
volumes or, alternately, by using a more computationally efficient kernel density
approach.
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LMOS Lake Michigan Region

The Lake Michigan Ozone Study (LMOS) is a multi-year effort to assist in the design of
cost-effective and defensible emission control strategies for the four-state region
surrounding Lake Michigan.

In spite of the previous and rather stringent emission controls, especially during hot
summers, humerous exceedances of the 120 ppb ozone standard continue to occur.
These violations are particularly frequent in the immediate vicinity of the lake itself, an
indication of the role played by the lake breeze circulation. Both sources and receptors
(population) are concentrated in a the narrow coastal zone experiencing the highest

values.

Given the complex nature of the lake-induced effects, a state-of-the-art prognostic
meteorological model (RAMS) was employed. An emissions model was developed
collaboratively with SARMAP. Both these models provided input into an advanced
version of the Urban Airshed Model (UAM-V). Moreover, a large-scale field observation
program collected special weather and chemistry data at the surface and aloft. The
overall budget is in excess of $10 million.

These are some of the problems encountered in LMOS:

« Three different modeling groups had to communicate via phone and fax.
Visuals (almost all black & white) were transmitted on paper, data on tapes.

« Each participating groups used different computer systems.

« In spite of best intentions, a common base map (or display format) was never
achieved.

« All three groups used entirely different, and incompatible, visualizations.

« Each group was very familiar with its own module but knew little of the
strengths and weaknesses of the others.

. Acquisition of input data (and data for evaluation) was extremely tedious and
consumed a very large fraction of the overall budget.

. Even at the end of LMOS, there are still basically three software systems that
are quite independent of each other.
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MARS/MEMO (EUMAC Zooming Model)  University of Thessaloniki

While the EUMAC model is generally considered and used as a regional model, a
second modeling system has been developed to operate at more of the regional scale.
This system, called either the EUMAC Zooming Model (EZM) or MARS/MEMO, was
developed primarily by Moussiopoulos (1995), and includes a non-hydrostatic
meteorological model (MEMO) linked to a photochemical model (MARS).

MEMO is a prognostic, non-hydrostatic model that solves the conservation of mass,
momentum and scalar quantities (potential temperature, kinetic energy and humidity).
It includes an inelastic approximation to filter sound waves. Terrain following
coordinates are used, and varying grid spacing can be used in each direction.
Turbulent diffusion is followed using a one equation model. Soil temperature is solved
using a 1D heat equation for the soil. MEMO allows multiple nests.

MARS is a 3D photochemical model. It's general formulation is similar to other
photochemical models, and like the CIT model, it treats vertical diffusion and chemistry
together (i.e., those two processes are not split). At present, MARS uses the KOREM
mechanism.

The EZM has been applied in a variety of domains including Athens and Thessaloniki,
Greece, Barcelona and Lisbon. More information about the EZM and its applications
can be obtained from Prof. N. Moussiopoulos at Aristotle University, Thessaloniki,
Greece.

Reference
Moussiopoulos, N. (1995). “Air Pollution Models as Tools to Integrate Scientific Results in Environmental

Policy,” Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C.A. Brebbia (eds),
Computational Mechanics Publications, 10-18.
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MM5 PSU/NCAR

The non-hydrostatic Penn State University/National Center for Atmospheric Research
(PSU/NCAR) mesoscale model, now widely known as MMS, is a 3D nested-grid
primitive-equation meteorological model designed for a wide variety of atmospheric
applications including air-quality studies. It is described in detail by Dudhia (1993) and
Grell et al. (1994). The model is written in a terrain-following sigma (non-
dimensionalized pressure) vertical coordinate and uses a split semi-implicit temporal
integration scheme. Prognostic equations predict the 3D wind components (u, v, and
w), temperature (T), water vapor mixing ratio (qv), and the perturbation pressure (p').
The perturbation pressure is the departure from a temporally invariant reference-state
pressure described by Dudhia (1993). Use of a reference state plus perturbations to
describe the total pressure is important for reducing numerical pressure-gradient errors
that occur in almost all terrain-following coordinate systems, so that the MM5 solutions
remain accurate in regions of steep topography.

The physical parameterizations in the model provide many options to the user. The
model contains the muiti-layer Blackadar planetary boundary layer (PBL) and Gayno-
Seaman 1.5-order closure PBL schemes to represent turbulent fluxes of heat, moisture
and momentum (Zhang and Anthes 1982; Gayno 1994). A surface energy budget
equation predicts the ground temperature (Tg) and includes the effects of insulation,
atmospheric path length, water vapor, cloud cover and longwave radiation. The surface
physical properties of albedo, roughness length, moisture availability, emissivity and
thermal inertia are defined as a function of land use for 13 categories via a look-up
table. A column radiation model also is included in the MM5 (Dudhia, 1989).

Precipitation options include several deep convective parameterizations. These are the
Anthes-Kuo scheme (Anthes 1977; Anthes ef al. (1987), the Betts-Miller scheme (Betts
and Miller 1986), the Grell Scheme (Grell 1993) and the Kain-Fritsch scheme (Kain and
Fritsch 1993). Each of the four convective schemes normally is applied in hybrid form
along with a resolved-scale precipitation scheme that explicitly predicts cloud water and
rain water concentrations (Hsie and Anthes 1984) with simple ice physics included
(Dudhia 1989). For economy, the MM5 model may also be run in a dry mode without
precipitation physics.

The model may be configured with nested grids having either one-way interactive or
two-way interactive mesh interfaces and up to ten separate domains. The nested grids
have a mesh ratio of three to one. Pre-processing software allows the generation of
detailed initial and lateral boundary conditions based on background analyses from the
National Meteorological Center, plus observations. The model's top level can be set
arbitrarily at any pressure level, although 100 mb is the most commonly used top level
to ensure that vertically propagating wave energy is damped in the stable stratosphere.
Horizontal and vertical resolution, and the number of grid points, is completely arbitrary.
Typical applications may provide greater vertical resolution in the lowest 1-2 kilometers
where surface heating and orography have the greatest influence on mesoscale flows.
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The Gayno-Seaman 1.5-order PBL scheme is designed to allow accurate predictions
with the lowest model calculations performed at 10 m AGL.

The MMS5 also includes a multi-scale 4D data assimilation (4DDA) technique based on
Newtonian relaxation, or nudging. The 4DDA scheme is a continuous assimilation
method that relaxes the model state toward the observed state by adding to one or
more of the prognostic equations artificial tendency terms based on the difference
between the two states. It is said to be a form of continuous data assimilation because
the nudging term is applied at every time step, thereby minimizing “shock” to the model
solutions that may occur in intermittent assimilation schemes. The multi-scale 4DDA
technique was developed by Stauffer and Seaman (1994) and includes simultaneous
use of two approaches outlined in Stauffer and Seaman (1990) and Stauffer et al.
(1991): (1) nudging toward gridded analyses interpolated to the model's current time
step, and (2) nudging directly toward individual observations. These two approaches
are referred to as “analysis nudging” and “obs nudging”. Analysis nudging is ideal for
assimilating synoptic-scale data that cover most or all of a model domain. Obs nudging
does not require gridded analyses of observations and is better suited for assimilating
high-frequency asynoptic data that may be distributed non-uniformly in space and time.
Nudged variables normally include winds, temperatures and water vapor. This versatile
4DDA system is very valuable for supporting a range of air-quality studies.
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Models-3 HPCC/US EPA

The Models-3 development effort being pursued under the High-performance
Computing and Communications (HPCC) program at the U.S. Environmental Protection
Agency (EPA) has goals very similar to those of CAMRAQ. This is not surprising, since
both efforts were outgrowths of EPRI-organized workshops in late 1990 and early 1991
that brought atmospheric and computer researchers together to formulate the need for
and desired characteristics of a "Complete Modeling System" for atmospheric research
and policy analyses. As EPA's primary effort under the HPCC initiative, development of
Models-3 has enjoyed a considerably higher level of funding than that for CAMRAQ's
CMS framework design. This is reflected in the disproportionate number of design and
assessment documents, relative to those from CAMRAQ, that have been produced as
part of Models-3 development under a variety of grants, cooperative agreements, and
contracts. Unfortunately, most of the documents are not publicly available. The major
goals, as listed in their Concept Paper document (Novak et al., 1995), are these:

* To provide more effective solutions for multipoliutant and multimedia
assessment efforts

* To provide key federal, staté, and industrial users with a computational and
decision support environment that is easy to use and responsive to
environmental problem-solving needs

* To advance the capability of environmental assessment tools by adapting
them to a heterogeneous, distributed computing environment that includes
massively parallel architectures

The second goal above includes the development of a framework that allows the users
of the system to utilize it in their daily activities. The description of this framework as
provided in the Models-3 documentation is similar in many respects to the requirements
listed in the CP for the CMS.

The CMS effort and the Models-3 work complement each other. The CMS and
Models-3 development groups are collaborating to prevent a duplication of effort and
make most efficient use of the resources and expertise available to both groups. This
interaction will continue throughout the development of the CMS and will be valuable to
both groups.

Both groups see that it is necessary to build a community consensus on some of the
basic standards for communications and module development that can be used by both
the Models-3 and CMS efforts. A close interaction between the groups and an open
exchange of ideas will allow members of the environmental modeling community to
make use of the modules from both systems that are most appropriate to their particular
problem and link them together seamlessly.
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MONTECARLO FaAA

MONTECARLO is a Lagrangian particle model for the simulation of transport and fate
of pollutants in the atmosphere. MONTECARLO is written in Fortran-77 and has been
successfully ‘run on workstations, Power PCs, and Pentium-based PCs.
MONTECARLO was developed as an improvement of the MC-LAGPAR Il model
(Zannetti, 1986; Graziani and Mosca, 1992). It accepts complex terrain, full 3D
meteorological input, and “zooming” regions with higher terrain resolution. The model
provides unique, high-resolution simulations of continuous or instantaneous releases
under time-varying, non-homogeneous atmospheric conditions. Point, segment, area,
and volume emissions can be used.

The model includes space-dependent, time-dependent linear chemistry, e.g., for SO,-
to-SO, conversion inside a plume. Similarly, dry and wet deposition are accounted for
by using a linear function with space-dependent, time-dependent rates.

MONTECARLO calculates concentrations by either superimposing a concentration grid
and counting the particles in each cell, or by using the kernel method.

A user's manual of the model is available (IDEA, Inc., 1995).
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Operational Multiscale Environment model with | SAIC
Grid Adaptivity (OMEGA)

SAIC's Applied Physics Operation (APO) has developed a revolutionary atmospheric
simulation tool for aerosol transport. The new model, the Operational Multiscale
Environment model with Grid Adaptivity (OMEGA), uses a novel unstructured, adaptive
grid approach which is designed to resolve the local atmospheric effects of terrain and
other surface features while maintaining a simulation of the larger scale weather
features.

OMEGA represents a significant advance in the field of weather prediction. Operational
atmospheric simulation systems in common use today do not provide the resolution
necessary to incorporate the effects of the underlying surface. For this reason, a local
forecaster in the United States must interpolate the local forecast from National
Meteorological Center forecasts guidance (grid point data at 90 km intervals). The
forecaster also incorporates his experience and knowledge of local effects to arrive at
the final forecast. Incorporating this “local knowledge” is not feasible in remote areas of
the world when time is a factor. The simulation must incorporate these local features.
Operational forecast models in current use are scale specific; their fixed rectangular
grid structure limits the resolution of both the input boundary conditions and the
resulting atmospheric simulation. The major advantages of OMEGA over the current
state-of-the-art include the ability to resolve the surface terrain down to scales of 1 km
and along with that the local perturbations on the larger scale wind field. This local wind
field perturbation is of extreme importance in determining the trajectory of an aerosol
release. In order to calculate this local perturbation, however, it is important to include
all of the physical parameters and processes which affect the local flow.

OMEGA forecasts wind, temperature, moisture, cloud elements, and precipitation by
solving a system of non-hydrostatic equations on the unstructured grid. The structure
of the grid may be adapted to topographic features such as terrain and land/water
boundaries or it may be adapted to atmospheric phenomena such as frontal regions or
areas of vertical instability that are favorable to storm development. The OMEGA grid
resolution can range from 100 km to 1 km in the horizontal and a few tens of meters to
41 km in the vertical. The simulation of the surface in the model includes a complete
surface energy budget and a soil hydrology model. These modules include the effects
of topography, land use, land/water composition, vegetation, soil moisture, and snow
cover. The inclusion of this physics in a multiscale model represents an additional
advance in the state-of-the-art. SAIC scientists have also incorporated an integral
aerosol transport model into the design of OMEGA to provide subgrid transport

simulation.

The left side of Figure 1 shows the OMEGA grid over the Florida peninsula as depicted
within the SAIC X-window analysis interface developed for OMEGA. Notice the
enhanced grid resolution along the coastline and around Lake Okeechobee. The
enhanced resolution allows for a more accurate representation of the sea breeze
circulation. The right side of Figure 1 shows a constant Southwest flow of 6 m/s which
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was used for this idealized simulation. Figure 2 depicts the simulated near-surface
winds for 1000, 1300, 1600, and 1900 LST (3,6, 9, and 12 hours, respectively, after the
model initiation). Figure 2 also shows the tracers from three simulated continuous
plumes.

OMEGA represents a revolutionary atmospheric simulation tool for multiscale
applications. While obviously aiding the sciences of numerical weather prediction, the
model will also have valuable applications in numerous aerosol transport problems,
ranging from urban air quality and compliance with US Environmental Protection
Agency regulations to emergency response to toxic releases. Figure 3 shows an
OMEGA grid adapting to pollution sources. *
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Figure 1. Simulation of aerosol transport and diffusion in an idealized Florida sea breeze circulation using
OMEGA. The left side of the figure shows the initial grid while the right side shows the initial wind field for
this simulation. Initialization occurred at 7 AM local time.
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RAMS MRC/ASTER

RAMS — the Regional Atmospheric Modeling System — represents the state-of-the-art in
general purpose regional, mesoscale, and cloud-scale atmospheric simulation and
prediction software. RAMS resulted from the merger of the cloud-scale, non-hydrostatic
model developed by Dr. William R. Cotton with the mesoscale primitive equation code
developed by Dr. Roger A. Pielke. Mission Research Corporation (MRC)/ASTER
Division holds the exclusive marketing license from Colorado State University for the
RAMS code.

RAMS is in fact a series of interconnected modules that allow simulation/prediction of
atmospheric phenomena in domains ranging from global to cumulus cloud scale. Only
those options required for a specific purpose need be employed. Either a full featured
of user-customized configuration of RAMS along with extensive training, code
maintenance and user support are available. ASTER provides the latest versions of
RAMS which have been under development for over 20 years, and which will continue
to advance as new physical modeling and numerical techniques are developed and
tested. RAMS has been widely used, tested and documented in over 500 technical
publications, including studies of land/sea breezes, convective storms, weather
modification, soil/vegetation/atmospheric interactions, air pollution dispersion and
emergency response, mesoscale temperature forecasts, large eddy simulations and air
flows over complex terrain. RAMS currently also serves as an operational regional
weather prediction system.

Initializing data can be as minimal as a single local rawinsonde or profiler. Alternately,
RAMS initialization can use an entire mesoscale database or, more commonly, nest
within grid points fields provided by NMC or other global models providing non-
homogeneous initial and non-stationary boundary conditions. 4D data assimilation
(4DDA) is available.

Model! configurations include 1D, 2D, or 3D, numerous (> 40 if needed) layers in the
vertical, detailed planetary boundary layer representations, two-way multiple nested
interactive grids (in both vertical and horizontal). Horizontal grid sizes can range from <
2 m (simulating flow around buildings) to > 100 km (global circulation modeling). RAMS
has hydrostatic or non-hydrostatic modes, and can employ uniform or variable land use,
topography, roughness, soil moisture and water temperature. There are selectable
options for turbulence closure, finite difference schemes, geographic coordinate
systems, upper and lateral boundary conditions and more.

RAMS generates basic atmospheric variables (wind, temperature, pressure, moisture)
at each model grid point and time step. From these a wide variety of parameters can be
derived, including turbulence, vorticity, stability indices, sound propagation, air density,
refractive indices, cloud liquid water, precipitation rate, etc.

RAMS is designed to serve as a front end to a variety of application modules. These
include predicting the environmental impact of gaseous and aerosol pollutants, the
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RAMS is designed to serve as a front end to a variety of application modules. These
include predicting the environmental impact of gaseous and aerosol pollutants, the
transport of radionuclides in complex atmospheric flows, the environmental component
of electrical energy consumption, convective storm development, etc. An interactive
graphic system can be used to display and animate RAMS generated fields in a variety
of formats.

The diversity of RAMS users include National Laboratories, military test ranges, nuclear
safety offices, university research teams and commercial weather forecasting services.

C40



Appendix C: Air Pollution Models/Systems

Regulatory Models Trinity Corporation

Trinity, in many ways, is one of the most successful developers of a preliminary
modeling system. They have taken a suite of the more basic models, e.g., Gaussian
Plume Models, that are used for permitting and similar applications, and bundled them
together in a fashion that is more readily accessible than their standard counterparts.
In many ways, the CMS envisioned here is a similar, but much more involved, process.
In the case of the Trinity Modeling System, the various models are made readily
accessible using engineered user interfaces. Data is more standardized. Model results

can be readily visualized, and report generation is facilitated.

Access to the Trinity modeling suite, or similar capabilities would be a desirable aspect
of a regional CMS to increase the potential uses. Also, the capabilities provided by the
CMS can be utilized by the more basic models, e.g., development of meteorological
and emissions fields. Such fields, with an appropriate 1/0 API could be used relatively
seemlessly to drive the Gaussian plume models, e.g., for permitting and SIP

preparation.
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ROM/UAM Modeling System US EPA

The current EPA regulatory version of the Urban Airshed Model (UAM) along with a set
of pre- and postprocessors and documentation was delivered to the EPA in 1990. The
UAM modeling system can be easily obtained by downloading it from the EPA SCRAM
bulletin board. This system includes Version 2.0 of the Emissions Processing System
(EPS 2.0), the Diagnostic Wind Model (DWM), and the ROM (Regional Oxidant
Model)/UAM Interface. Along with the software and documentation, EPA has also
published guidelines for the regulatory application of the UAM that delineate the
procedures to be used when applying the UAM for regulatory decision making (e.g., a
SIP), including procedures for a comprehensive model performance evaluation.

When available, the EPA guidelines recommended use of the ROM/UAM interface
system for developing the UAM initial concentrations and boundary condition (IC/BC)
inputs. This is accomplished through use of the ROM/UAM interface system software.
The portions of the ROM inputs and outputs needed for the ROM/UAM interface system
are available from the Gridded Model Information Support System (GMISS) on EPA's
IBM mainframe computer system. The ROM model itself has only recently been made
available by the EPA. However, the science and numerics in the ROM/UAM modeling
are 5 to 10 years old. Furthermore, the ROM model has not yet been subjected to the
level of comprehensive model performance evaluation as required for the regulatory
models (e.g., UAM).

During the initial stages in the development of the UAM modeling system there was a
concerted effort to develop a set of software programs that easily linked with each
other. However, later on the focus was to bring newer technology into the UAM
applications (e.g., use of the DWM) with no resources allocated to integrate the new
modules into the UAM system. The resources allocated to the delivery of the UAM
modeling system in 1990 were sufficient solely for documentation. Very few resources
were available for streamlining the system or for providing user-friendly interfaces. The
exception to this is for the EPS and GMISS where the EPA developed graphical user
interfaces (GUI). Unfortunately, these GUIs were developed in SAS, the GMISS GU! is
limited to EPA's IBM mainframe, and the EPS GUI use is also very limited.

C42



Appendix C: Air Pollution Models/Systems

SARMAP Air Quality Modeling System SJVAQS/AUSPEX

As part of the San Joaquin Valley Air Quality Study (SJVAQS)/Atmospheric Utilities
Signatures: Predictions and Experiments (AUSPEX) Regional Model Adaptation
Project, RADM and MM4 were extended to provide additional capabilities (the names
of the updated models are SAQM [SARMAP Air Quality Model] and MMS5,
respectively). In addition, GEMAP (Geocoded Emissions Modeling and Projections,)
was developed jointly with the Lake Michigan Air Directors' Consortium (LADCO) and
applied in the modeling region to obtain modeling emissions inventories. Both MM5
and GEMAP are described elsewhere in this appendix. In developing SAQM, a
number of improvements or changes with respect to RADM were made:
e A fixed vertical coordinate system was incorporated into the model to make
its vertical grid structure compatible with the vertical grid structure of MMS5.
e |t mass conservation module was updated to make it compatible with the
non-hydrostatic meteorological input.
* The advection scheme was updated from Smolarkiewicz's (1983) scheme to
Bott's (1989a, 1989b) scheme to reduce numerical diffusion and increase
numerical accuracy.
* Its dry deposition module was updated based on findings from the 1991 San
Joaquin Valley Deposition Study (Massman et al., 1994)
¢ lts chemical mechanism was changed from the RADM2 mechanism to a
choice of either of two mechanisms: the Carbon Bond Mechanism, version 4
(CBM-IV) and the Statewide Air Pollution Research Center (SAPRC)
mechanism (Carter, 1990).

The following description of SAQM is adapted from the draft final report to the
SARMAP sponsors prepared by Julius Chang of the State University of New York at
Albany.

SAQM is a three-dimensional regional scale nonhydrostatic air quality model (Jin and
Chang, 1994). It is based on the modeling framework of the Regional Acid Deposition
Mode! (RADM) (Chang et al., 1987) with some fundamental changes to allow the
model to have much wider applications rather than to be limited to the condition of
hydrostatic balance. For each atmospheric trace species considered in the model, its
concentration is governed by atmospheric transport, source emissions, deposition
removal, and chemical transformation. The corresponding constituent mass
conservation equation is:

aC aC oC

_a_t =-V. (VC) +V.- (KeVC) -+ Pchem - Lchem +E+ (-é;-)doud + (E)dry 1)

where C is the chemical trace species concentration, V is the three-dimensional
velocity vector at each grid point in the model domain, K¢ is the eddy diffusivity used to

parameterize the subscale turbulent fluxes of trace species, Pchem and Lchem are the
production and loss rates due to chemical reactions, E is the source emission rate,

C-43



Appendix C: Air Pollution Models/Systems

(aC1 at),,,, is the time rate of change of concentration due to cloud effects, and
(9C1 or),, is the rate of change due to dry deposition.

The Non-hydrostatic Eulerian Transport Equation

SAQM's horizontal coordinate system uses the Lambert conformal projection.
Vertically, SAQM uses a terrain-following non-hydrostatic s coordinate system. The
vertical coordinate o is defined as a function of a selected reference state of the

atmosphere which does not change with time and has the following form:
c= P 0~ P TO )
Pgo — Pro
where P_ is the reference pressure at the top of the model and is set to 100 mb, P is
the reference pressure at a given point (x, y, z), and P_ is the reference pressure at the

surface at position (X, y).

The transport equation under the nonhydrostatic s coordinate system is derived
through the continuity equation and has the form of

oC* a2 {uC* o [(vC* ad *
e i
P*| @ d(C d ad(C
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where C* = (P* / pO)C; C is the trace species concentration in density units, such as

molecules/ cm’; p, is the air density of the reference state; P* = Pgy — Pry; m is the ratio
of the transformed distance on the Lambert conformal map projection to the true
distance; g is the gravitational acceleration; p is the density of air; K, and K are the
horizontal and vertical eddy diffusivities; « and v are the horizontal wind velocity
components in x and y directions, and W is the vertical velocity defined in the non-
hydrostatic s coordinate system and has the form of

W=—p°fw—mf[uap*+vap*} 4)

P P ox dy

It should be noted that variable C/p has been used for eddy diffusion calculations in
equation (3), instead of density C. These forms of eddy diffusion can be easily derived
through first order K-theory approximation of turbulent fluxes by neglecting the smaller
density perturbation term [Stull, 1988; Venkatram, 1993]. The use of mixing ratio for
the eddy diffusion terms guarantees the conservation of mixing ratio and ensures that
tracers are being mixed properly with its carrier. In theory, using tracer density C for
eddy diffusion calculations would be fine if the tracer carrier, the air, is also being

C-4



Appendix C: Air Pollution Models/Systems

mixed in the same manner both in formulation and in numerical computation. But this
has not been the case in most of the existing air quality models. Air density is normally
given by the meteorological model or interpolated from observations. When that is
coupled to air quality model eddy mixing algorithm one can no longer guarantee that
an inert tracer at equilibrium has constant mixing ratio vertically.

The vertical velocity W defined in equation (4) is a function of all three-dimensional
wind components u, v, and w. The three-dimensional wind and mass fields used by
the air quality model are generally hourly data from a mesoscale meteorological
model or observations. When these hourly wind fields are interpolated to the time step
of advection calculation, the three wind components, u, v, and w, are no longer
guaranteed to be consistent among themselves. Thus the calculated vertical velocity,
W, becomes inconsistent with the horizontal wind components, u and v, as well. This
inconsistent wind fields will create numerical oscillations in trace species
concentrations when advection calculations are carried out in the model.

Mass-inconsistent problem can be caused either by spatial and time interpolations of
the meteorological fields or by using different numerical schemes in solving the
transport equations between the meteorological model and the air quality model.
Considerable efforts have been made since the first recognition of the mass-
inconsistent problem between wind and mass fields [Sasaki, 1958]. To date, the
widely used approach for solving the mass-inconsistency problem is to directly adjust
the wind fields. In all the current mass-consistent wind field adjustment models, it is
generally assumed that air is incompressible so that only hourly adjustment to the
wind fields is needed. When the incompressibility of air or wind field is no longer valid,
a step by step adjustment to the wind fields becomes necessary. This is
computationally very expensive. In fact, it is virtually impossible for an air quality
model to carry such a complex and time consuming wind field adjustment model
economically. '

Jin et al. [1993] developed a new mass-inconsistency correction scheme for three
dimensional air quality models based on the work of Kitada [1987]. By concurrently
computing the tracer species' transport and medium transport, the proposed correction
scheme is able to eliminate numerical oscillations generated by the mass-inconsistent
wind fields. This methodology has been employed in SAQM. Experimental studies
with uniform tracer mixing ratio in SAQM show less than 0.01% changes in all the
model grids after 24 hours of transport calculation. With this error correction scheme
SAQM can use meteorological data from diverse sources including operational
weather forecasts. Further, this also allows for grid refinements so that SAQM can be
used for urban air quality study when meteorological data on grid dimensions of a few
kilometers must be interpolated from lower resolution data base.

Chemical Mechanisms and Emissions

SAQM has three different gas-phase chemical mechanisms, CBM-IV (Whitten et al.,
1980), SAPRC (Lurmann et al., 1986) and RADM2 (Stockwell et al., 1990). All other
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components of these different versions of SAQM are identical except for those details
associated with the differences in chemical speciation. Among these mechanisms the
inorganics are very much alike with only minor differences. It is the representation of
the organics that differentiates these mechanisms. At each grid point of the simulation
domain, SAQM predicts time-varying concentrations of 40 to 60 trace gases
depending on the version of the model. It is interesting to note that each of these
mechanism has been tested against almost all the smog chamber data and all have
been judged as acceptable (Dodge, 1989). Therefore any differences among these
models must be considered as the uncertainty of current knowledge. Indeed, recent
calculations have shown that while ozone amount at many locations as predicted by
SAQM/CBM-IV and SAQM/SAPRC are very similar, the amount of H2O2 as predicted
by these two models can be very different. While it is tedious to present a listing of all
three mechanisms, the following table gives an overview of the differences in addition
to the difference in philosophy for lumping organics species. Our experience indicates
that the smaller organics speciation of the CBM-IV mechanism does allow that version
of SAQM to be almost a factor of two faster than the SAPRC version and the RADM2
version is about the same speed as the SAPRC version.
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Table 1. Summary of three gas-phase chemical mechanisms

SAPRC CBM-iV RADM2

Number of reactions 135 87 157
Number of photolytic reactions 16 11 21
Number of reactive species 50 36 58
Organics

alkanes 3 2 5

alkenes 5 3 4

aromatics 3 3 3

aldehydes 3 2 2

other carbonyls 3 2 4

Emissions supplied to SAQM include mobile sources, point sources, area sources,
and biogenics from agriculture and forests with grid resolution of 4 km. The emissions
are processed separately for SAPRC and CBM-IV chemical mechanisms according to
the mechanism specific organic lumping procedures. Unlike NAPAP emissions
generated for RADM, SARMAP emissions are classified into source categories before
they are combined for model input. These separate emission source categories allow
changes of individual emission sources, such as mobile sources, and made model
sensitivity studies much more convenient and meaningful. In addition to the emission
category classification, the exact geographical locations of stacks are provided instead
of the center points of emission grids where the stacks belong. These accurate stack
coordinates allow us to use model grids smaller than emission resolutions to study the
effect of individual plumes.

Numerical Algorithms for Transport Calculations

The atmospheric transport processes as represented in equation (3) consist of two
parts: advection and eddy diffusion. For the advective transport calculation, there are
many modern schemes available for use, such as the simple positive definite
advection scheme of Smolarkiewicz as used in RADM [Smolarkiewicz, 1983], the
Bott's high order polynomial scheme [Bott, 1989a, 1989b], the Prather second-order
moment scheme [Prather, 1986}, and the semi-Lagrangian approach [Smolarkiewicz
and Pudykiewicz, 1992]. The choice of a numerical advection scheme for a specific
application involves the consideration of numerical accuracy, mass conservation,
computational efficiency, and the overall computer memory requirement. In SAQM,
Bott's advection scheme has been implemented based on its overall merits as
compared to the other schemes. In the horizontal direction, operator splitting
technique with Bott's fourth order scheme for uniform grid-size is used. Because of the
variable vertical grid-size a new second scheme for nonuniform grids has been
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derived. | was found to be more accurate than what was used in RADM in maintaining
sharp vertical gradients in tests of trace species distributions.

The vertical eddy diffusion calculation is based on K-theory for non-convective
atmospheric conditions as described in Chang et al. [1987]. Under convective
conditions, the non-local closure asymmetrical mixing scheme developed by Pleim
and Chang [1992] has been implemented. The atmospheric stability is determined by
the calculated Richardson number according to temperature and wind profiles
provided by MMS.

Horizontal eddy diffusion has been considered in SAQM simulation . With the highly
accurate Bott's scheme there is very little numerical diffusion hence it is important to
include the physical diffusion. In SAQM, a value of 50 m’s’ is being used for the
horizontal diffusion calculations, according to a number of sensitivity studies with the

model. For horizontal grid-size smaller than 12x12 km® this value must be reduced
appropriately to be compatibie with the grid size.

Other Model components

Dry deposition fluxes are computed for all the relevant species (up to 13 species) by
multiplying trace species concentrations in the lowest model level by species-specific
deposition velocities, which are parameterized in terms of atmospheric stability, land
type, season, insolation, and surface wetness.

Effects of clouds, including subgrid-scale vertical redistribution, aqueous chemistry,
and trace gas and particle scavenging, are parameterized using a simple one-
dimensional cloud model (Walcek and Taylor, 1986) and a local equilibrium aqueous
chemistry and scavenging submodel. The presence and characteristics of clouds are
parameterized in terms of precipitation rate and vertical profiles of temperature and
moisture.

Nested SAQM

A two-way nesting technique coupling models with different geographic scales was
developed. In this manner, the small scale model can provide critically needed high
resolution corrections to the iarger scale model and the larger scale model can
provide the time dependent boundary conditions back to the smaller scale model so
that consistent information is used by both models (Chang et al, 1993; Chang et al.,
1994). Since this technique is not yet published some technical details are provided
here.

Consider the numerical solution of a set of pollutant transport equations over a given
geographical domain. First, a base uniform grid system is selected and over this grid
system a suitable finite difference approximation is applied to this set of equations.
This solution, solved over a predetermined uniform grid, is called the base model or
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the coarse grid model. Over a subdomain of this domain a finer grid system is
superposed using a three-to-one reduction in grid size. Because in most air quality
models chemical species mixing ratios are specified at grid center, an odd number
scaling ratio insures that every third grid column in the nested grids shares the same
physical location with one of the base model grid columns. The relevant solution over

this nested grid system is the nested model or fine grid model. At any given time step
the base model will provide the appropriate boundary conditions for all variables to the

nested model. Each model will be solved independently but simultaneously. Because
of Courant condition, to maintain relative accuracy the nested model must take several
small time steps to reach the same time instant as one step of the base model. At this
juncture, a variant of the Richardson extrapolation aigorithm is applied at all grid points
that have solutions in both grid systems to provide coupling between results from
these two models.

Without loss of generality, a solution of a one-dimensional advection equation for a
scalar ¢ is,

¢ 99

—+u—=0

o ox )
where u is the velocity. For any given finite difference solution scheme of this

transport equation included in an air quality model, adopt the convention that lower
case variables denote those values associated with the nested model and upper case

variables denote the corresponding values associated with the base model. For
example, the scalar ¢}'+1 represents the value at grid pointj after n+1 time steps in the
nested domain. For a one-step (in time) advection scheme that is pth-order accurate

in space, with constant grid spacing Ax and time increment Ar+ over the nested
domain, the analytical solution (¢}‘+1)* is approximated as

(¢;.+1 Y= ¢;+1 + L{Ar (Ax)’ - (u¢)§p+l)(§)], 6)
where (u¢)(j” *D is the values of p+1 th-order spatial derivative of (u¢) at grid pointj after

n +1 time steps, and C is some constant. & represents some mean value in the
neighborhood of ((n+1)At, jAx) and exists by virtue of the Mean Value Theorem.
Similarly, in the coarse grid domain the coarse grid scalar @ at grid J after N+1 time
steps is set as (cb}v +1). Grid spacing and time increment are denoted AX and AT

: - SN+
respectively. Then the analytical value{ @} is

0w e axp wofp )

where U represents wind speed on the coarse grid and 77 is some mean value in the
neighborhood of (N+1)AT, JAX). lf gridj and gridJ are at the same physical
location in the modeling domain and (n+1)At, and (N+1)AT, are at the same time, then
the analytical solutions should be equal,
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(¢n+l) (¢JN+1) * . (8)
If we further assume the solutions to be sufficiently smooth over the domain of

simulation then the unquantified part of the error terms of (6) and (7) are approximately
equal to each other,

9) (&) = (W)F*V(m). ©)

Therefore, after rearrangement, truncation errors of (6) and (7) can be estimated.
Equations (6) and (7) can be rewritten as

a1\ _ sntl At-(Ax)P B+ _ g+l
(677 =] [ar-(ax)? - ar- (Ax)”]( -7 oo

and

- AT - (AX)P
((p}v +1)*_¢5v +l_[AT'(AX)p—At-(Ax)P]( @) ¢n+1)' 11

Equations (10) and (11) provide corrections to the solutions on the corresponding fine
grid and coarse grid points, respectively. The corrected solutions are identical at those
common points up to the next order of the truncation error for the given difference
scheme. It is clear that at all points of collocation, solutions on both grid systems are
identical (except for grid average scaling) and information from the nested model has
been integrated into the base model. Furthermore, at those points of the corrected
solutions are usually more accurate than either solution individually.

This two-way nesting scheme has been successfully implemented in SAQM (Chang et
al, 1994). For a model validation case of August 1990 over central California the two-
way nested modeling system was able to bring the coarse grid solution of oxidant
concentration to near the level of the fine grid solution. In fact very early in this five-day
episode the coarse grid was not able to predict that a certain rural region was
exceeding the US ozone standard. But with the help of the nested model the
exceedances were simulated in the fine grid model. This then fed back to the coarse
grid model for the next several hours. For every subdomain tested with the two-way
nesting technique, better resolution was achieved in the corresponding grid location in
the coarse grid model. At the FSD site the over prediction of ozone peak on the last

day of the simulation was reduced by 50% with the 4x4 km2 nested model while all
other peaks remained the same. This change was traced to the fluctuations in wind
fields around this site in 12x12 km2 SAQM and the nested model with much smaller
grid size. The important finding is that when prediction improvement is made through
nesting, the previous good results remains the same. This adds significantly to
confidence in the model as a prognostic tool.

Surface layer submodel
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In the application of SAQM and similarly with other Eulerian air quality models it was
found that comparison of calculated trace gas concentrations in the lowest level of the
model with measured ground level concentrations often disagree. This is particularly
true for VOCs and NOx. For primary pollutants SAQM usually underestimates the
concentrations in source regions. In the same regions, SAQM also frequently
overestimates ozone minima at night.

This problem can be attributed to the fixed 60m thickness of the lowest level of SAQM.
At night, if the boundary layer is very stable, in 5-8 hours pollutants emitted from the
surface may not mix higher than 20m or so. But SAQM with a 60m-thick first level will
mix all sources uniformly in this layer. Therefore independently of all other factors one
can expect an underestimate of source gases at night by factors of 3 or more. At the
same time, surface ozone in the source region is removed by interaction with NO and
through dry deposition. If the first level is 60m thick then we have a 60m volume of
ozone to remove which is much more than the 20m or so occurring in real life. Further
the underestimated NO concentration will not be so efficient in converting ozone to
NO2 which then adds to the underestimation.

An obvious solution to this problem is to add more vertical levels near the surface
keeping a thin first level, e. g. 10m or 20m thick. This was tested with SAQM with
interpolated wind fields. The surprising finding was that SAQM execution speed
degraded significantly. The comparison with observation did indeed improve but not
as expected. The increase in execution time was due to the need for a much smaller
time step in solving the vertical diffusion equation during daytime period. If the time-
step was increased, the results were either poor or the solution could actually become
unstable. The sharp change in layer thickness between the first and second layer
caused significant loss in numerical accuracy unless much smaller time steps were
used. The resulting increase in computation cost by factors of two or more was not
acceptable in application.

The following surface layer submodel (sls) was developed to resolve the first level of
the original SAQM grid system with a number of new levels, e. g. level-a, level-b and
level-c (see figure on next page). The diffusion.coefficient K2 is given by MMS5 or
SAQM as before. The diffusion coefficients Ka, Kb, Kc are estimated at the resolved
levels using MM5 meteorological conditions. At the present, levels a, b and ¢ have
thicknesses 10 m, 20 m and 30 m, respectively. K1 is an average of Ka, Kb and Kc.
Wind fields for each of these levels are also interpolated and the mass-consistency
error correction technique of SAQM is used in the sls submodel in computing
advections.

In SAQM with sls, all surface emissions will go into level a. Those point sources that
originally went into level 1 of SAQM will be reprocessed to go into levels b or ¢ of the
sls submodel as appropriate. Dry deposition applies only to level a in the sis
submodel.
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Original SAQM
Grid
level 2, K2 Surface-layer
Submodel Grid
Kc levelc
level 1, K1 : Kb level b
Ka level a

At each time step the exchange between levels a, b and ¢ is computed directly using
all the MM5 meteorological variables as if the original equations were solved. Level 2
is the upper boundary condition for the sls submodel. The numerical solution of the sis
submodel is efficient because it has only three levels. Explicit methods with small
time steps can be used.

In the sls submodel all trace chemicals can also undergo horizontal transport taking
into account the effect of resolved wind fields from MMS5 and the impact of sources and
dry depositions into thin surface layers. For each variable its values are averaged
from levels a, b and ¢ and the corresponding variable in level 1 is set at this value.
Now the original vertical exchange is solved with the original scheme using levels 1, 2,
3,... Atthis stage a correction is imposed in that changes in level 1 concentrations
from this step are then proportionally distributed into levels a, b and c in the sls
submodel.

Using the sls, it is clear that while maintaining the same daytime accuracy in ozone
predictions, night-time ozone levels improved dramatically. What is even more
significant is that simulated NOx time series at these sites agreed much better with
observations.

There remained overshoot in NOx time series associated with singularities in emission
modeling which will be corrected in the future. The ability to predict extremely high
NOx levels such as over 100 ppb as is actually observed is a significant advance in
urban ozone modeling.

As of this writing, SAQM is in use by about half-a-dozen groups outside the staff at its
home repository at the California Air Resources Board. As mentioned above, it has
been modularized at the North Carolina Supercomputing Center. The modules
include alternative treatments of advection, diffusion, chemistry, and numerical
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solution algorithms and are user selectable. Simulations using this modularized
system in a SAQM-emulation configuration agree almost exactly with those performed
with the original version.
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UAM Systems Applications International

The Urban Airshed Model (UAM) developed and maintained by Systems Applications
International (SAI) is the most widely used photochemical air quality model in the world
today. Its roots extend back to the earliest attempts at photochemical air quality
modeling in the early-1970s pioneered by SAl. Since that date, the model has nearly
undergone a continuous process of application, comprehensive performance
evaluation, update, extension, and improvement. The UAM has been applied to and
evaluated in over 34 cities, 26 in the United States, and 8 abroad including Athens,
Turin, Taipei, Kaohsiung, Tokyo, Mexico City, and Melbourne. It has been successfully
applied and evaluated in areas with meteorological conditions that range from simple to
complex, coastal and inland locations, mild-to-severe ozone problems, emissions
configurations ranging from low-to-high spatial variability, and databases that range
from sparse to rich.

There are two main versions of the UAM in use today: the standard EPA version of the
UAM (UAM-IV), which is the EPA recommended model for performing regulatory
analysis and making policy decisions with regard to ozone abatement, and the new
variable-grid version of the UAM (UAM-V), which incorporates many scientific
improvements over the UAM-IV. The UAM and UAM-V are both supported by
comprehensive modeling systems for developing the inputs required by 3D
photochemical models. These modeling systems are described next, followed by a
more detailed description of the nested-grid UAM-V.

Overview of the UAM-IV Modeling System

The current UAM-IV modeling systems was released by the EPA in 1990, and is fully
documented in the UAM user's guide. The UAM-IV modeling system includes the
following components:

o The UAM-IV 3D photochemical grid model for estimating ozone and
precursor concentrations (Morris and Myers, 1990);

o The Diagnostic Wind Model (DWM) for generating physically realistic 3D wind
fields (Douglas, Kessler, and Carr, 1990);

o Version 2.0 of the Emissions Processing System (EPS 2.0) which generates

hourly, gridded, speciated emissions data required by a photochemical grid
model (EPA, 1992);
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o The ROM/UAM Interface System for generating UAM-IV initial concentrations
and boundary condition inputs from output from EPA's Regional Oxidant
Model (ROM) (Tang et al., 1990); and,

o Assorted additional pre-processing programs for generating additional UAM-
IV inputs (Morris et al., 1990).

A UAM Postprocessing System (UPS) has also been developed for displaying the UAM
inputs and outputs. In addition, user-friendly GUIs have been developed for the UAM-
IV, such as the UAMGUIDES, which provide easy access to the operation and
visualization of the inputs and outputs of the UAM-IV.

Overview of the UAM-V Modeling System

There are currently two modeling systems centered around the UAM-V: the Lake
Michigan Ozone Study (LMOS) Photochemical Modeling System, and the UAM-V
Modeling System. Both these modeling systems use prognostic meteorological models
with 4D data assimilation (4DDA) for developing dynamically consistent 3D
meteorological inputs for the UAM-V: the LMOS system uses the CALRAMS, and the
UAM-V system uses the SAIMM prognostic meteorological models. The EMS-95 and
EPS 2.0 emissions modeling systems are used, respectively, with the LMOS and UAM-
V modeling systems. These systems are currently being used in the Lake Michigan,
Gulf of Mexico, Atlanta, Northeast, and other regions.

Description of the UAM-V

The most current operational version of the UAM, UAM-V, contains two-way grid
nesting allowing regional-scale precursor transport and several imbedded urban areas
to be treated in a single modeling domain. In addition, UAM-V allows variable vertical
layer number and spacing, specification of 3D meteorological variables, and explicit
treatment of subgrid-scale photochemical plumes (i.e., plume-in-grid). The UAM-V
software has been completely rewritten to be modular in form, and includes updated
deposition, plume rise, solar flux, and chemical kinetics modules.

Conceptual Overview of the Model

Version V of the Urban Airshed Model (UAM-V) is a 3D photochemical grid model
designed to calculate the concentrations of both inert and chemically reactive pollutants
by simulating the physical and chemical processes in the atmosphere that affect
pollutant concentrations. The basis for the UAM-V is the atmospheric diffusion or
species continuity equation. This equation represents a mass balance in which all of the
relevant emissions, transport, diffusion, chemical reactions, and removal processes aré
expressed in mathematical terms. The model is usually applied to an 48- to 120-hour
period during which adverse meteorological conditions result in elevated pollutant
concentrations of the chemical species of interest.
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The major factors that affect photochemical air quality include:

o The spatial and temporal distribution of emissions of NO, and volatile organic
compound (VOC) (both anthropogenic and biogenic);

o The composition of the emitted VOC and NO,;
o The spatial and temporal variations in the wind fields:

o The dynamics of the boundary layer, including stability and the level of
mixing;

o The chemical reactions involving VOC, NO,, and other important species;
o The diurnal variations of solar insolation and temperature;
o The loss of ozone and ozone precursors by dry and wet deposition; and,

o The ambient background of VOC, NO,, and other species in, immediately
upwind, and above the region of study.

The UAM-V simulates these processes when it is used to calculate ozone
concentrations. It can also be used to simulate carbon monoxide concentrations in an
urban area, a simulation that involves no chemical reactions. In the model, the species
continuity equation is solved using the method of fractional steps in which the
atmospheric diffusion equation is solved separately in the following order: emissions are
injected; horizontal advection/diffusion is solved; vertical advection/diffusion and
deposition is solved; and chemical transformations are performed for reactive
poliutants. The UAM-V performs this four-step solution procedure during each time
step. The maximum time step is a function of the grid size and the maximum wind
velocity and diffusion coefficient. Typical time steps for coarse (10-20 km) grid spacing
is 10-15 minutes, whereas, time steps for fine grid spacing (1-2 km) will be on the order
of minutes.

Because the UAM-V accounts for spatial and temporal variations, as well as differences
in the reactivity (speciation) of emissions, it is ideally suited for evaluating the effects of
emission control scenarios on urban air quality. This is accomplished by first replicating
a historical ozone episode to establish a base case simulation. Model inputs are
prepared from observed meteorological, emission, and air quality data for a particular
day or days using prognostic meteorological modeling and/or diagnostic and
interpolative modeling techniques. The model is then applied with these inputs and the
results are evaluated to determine its performance. Once the model results have been
evaluated and determined to perform within prescribed levels, the same meteorological
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inputs and a projected emission inventory can be used to simulate possible future
emission scenarios. That is, the model will calculate hourly ozone patterns likely to
occur under the same meteorological conditions as the base case.

The new UAM-V has the following additional features over the UAM-IV:

1. Structured modular computer code: The UAM-V computer code has been
rewritten to be more modular for ease of inclusion of new modules and to
take advantage of modern computers.

2. Vertical grid structure: The vertical layer structure in the UAM-V can be
arbitrarily defined by the user and is no longer defined from the diffusion
break (mixing height). This allows for higher-resolution vertical layers near
the surface and better matching with output from prognostic meteorological
models, which usually use a terrain-following coordinate system.

3. 3D inputs: Several meteorological variables that were considered spatially
constant in the UAM CB-IV (i.e., in the METSCALARS input file) now vary
temporally and spatially (e.g., temperature, water vapor, pressure, and
photolysis rates). Furthermore, the horizontal diffusivities and vertical
turbulent exchange coefficients are now required as input, usually
calculated from a prognostic meteorological model.

4. Variable-grid resolution for chemical kinetic calculations: A chemical
aggregation scheme has been implemented in the UAM-V; the chemistry
calculations can be performed on a variable grid while the
advection/diffusion and emissions injections are performed on a fixed grid.

5. Two-way nested grid: Finer grids can be imbedded in coarser grids for more
detailed representation of advection/diffusion, chemistry, and emissions.
Several levels of nesting can be accommodated.

6. Update of the CB-IV chemical mechanism: The Carbon Bond IV chemical
mechanism has been updated. The XO2-RO; reaction has been added
along with new temperature effects for PAN reactions. In addition, aqueous-
phase chemistry has been added as an option.

7. New dry deposition algorithm: The dry deposition algorithm formulated by
Wesely (1989) has been implemented in the UAM-V. This algorithm is
similar to that used by the Regional Acid Deposition Model (RADM).

8. Advanced prognostic meteorological model: A new advanced prognostic
meteorological model was developed to support the application of the UAM-
V to regional or urban domains (Douglas, Kessler, and Lester, 1991). The
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prognostic model incorporates the latest 4D data assimilation, solution
“nudging”, and objective combination methods to obtain physncally realistic
3D meteorological fields for input into the UAM-V.

9. True Mass Balance: Concentrations are advected and diffused in the model
using units of mass per unit volume rather than ppm. When a given amount
of ppm of a pollutant is transported from one grid cell to another that has a
different temperature or pressure there is a different amount of mass within
the grid cell for the same ppm (ideal gas law). By expressing concentrations
as mass per unit volume then true mass balance is maintained in the
advection and diffusion.

10.  Plume-in-Grid: Emissions from point sources can be treated by a subgrid-
scale Lagrangian photochemical plume model. Pollutant mass is released
from the subgrid-scale model to the grid model when the plume size is
commensurate with a grid cell size.

Technical Formulation

The Urban Airshed Model (UAM) is a 3D grid (Eulerian) model designed to calcuiate the
concentrations of both inert and chemically reactive pollutants by simulating the
physical and chemical processes in the atmosphere that affect poliutant concentrations.
The basis for the UAM is the atmospheric diffusion equation (also called the species
continuity or advection/diffusion equation). This equation represents a mass balance in
which all of the relevant emissions, transport, diffusion, chemical reactions, and removal
processes are expressed in mathematical terms as follows:

+5(“ci) + A + Awe) - é.(Kxﬁ_) +ﬁ(K E{) + (K ﬁ)

y v

ot ox oy o2 * & & V74 &
Time Advection Turbulent Diffusion
Dependence

+ R + S, + D, + W

1 1 i i

Chemical Emission Dry Wet
Reaction Deposition Deposition

where ¢; represents the pollutant concentration and is a function of space (x, y, z) and
time (t). The other terms in this equation are:

u,v,w = horizontal and vertical wind speed components
Ku, Ky = horizontal and vertical turbulent diffusion coefficients
R; = net rate of production of pollutant i by chemical reactions
S emission rate of pollutant i
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D; = net rate of removal of pollutant i by surface uptake processes
W, net rate of removal of pollutant i by wet deposition processes

Overview of Model Concepts

The UAM-V employs finite differencing numerical techniques for the solution of the
advection/diffusion equation. The region to be simulated is divided up into several 3D
grids covering the region of interest. The UAM-V is set up with a base coarse grid
covering the entire domain which is augmented by finer nested-grids for regions in
which more refined analysis is deemed necessary. The UAM-V accepts nesting in the
horizontal and vertical, and allows for many levels of nesting if desired.

The vertical layer structure of the UAM-V can be defined arbitrarily by the user. Usually,
the vertical layers of the UAM-V are defined to match the vertical layer structure of a
prognostic meteorological model which are frequently used to define the UAM-V
meteorological inputs. Note that this makes the UAM-V much more flexible than the
UAM, which defined its vertical layers from the diffusion break (mixing height) input. The
UAM-CB-IV grid nesting in the vertical allows for the use of high resolution in regions
where it is needed (e.g., urban centers, coastal regions), and coarser resolution
elsewhere.
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FORTRAN CODING STANDARD FOR MODELS-3

REUSE

If a2 library module does the task already, use it. Don‘t
reinvent the wheelt!!

TYPOGRAPHY AND STYLE
ANSI

Code will conform to the FORTRAN ANSI 77 standards with the
following exceptions:

(1) Modules written to conform to FORTRAN ANSI 90;

(2) Special cases where the use of extensions is
necessary to achieve specific required results;

(3) Extensions permitted by this Models-3 standard.

Compiler option(s) should be enabled to identify non-ANSI
usages. Code should compile without non-ANSI messages with
the above exceptions.

Source File Extensions

To satisfy the Models-3 model-builder tool use the following
FORTRAN source code file name -extensions:

(1) *.F* for other than include files;
(2) *.EXT" for include files.

scces N
To satisfy the Models-3 model-builder tool and its use of
SCCS include a comment statement at the beginning of each
FORTRAN source code file as follows:

C IWZ 3IP% 3G 33U

Comments

Comment text is preferred in mixed case (with capitalization
of proper names, etc., as in normal writing). Program code
should be in upper case.

Comments should be used freely, but should be concise and
should not restate the obvious.

In-line exclamation-point comments documenting purpose of
variables, individual steps in algorithms, and beginning and
ending statements of loops or the various parts of extended
IF-THEN-ELSE-END IF constructions are to be encouraged.

Revision history should be maintained in a format conforming
to that of the program/subroutine/function/INCLUDE templates
(Appendices 1 and 2). For the respective version of the
module, it should document the nature of each revision,

the name of the developer, and the date of revision.

Line Lengths, Margins, and Indentation

Production FORTRAN code must fit between columns 1 and
80 inclusive. Use column 1 for *“C* or “** comment-line
indicators (be consistent with C or *). Use columns 1
through 5 for any statement labels. {(You may opt to
limit statement labels to columns 2 through S.) Left



justify statement numbers. Use column 6 for continuation
indicator(s) only. Use columns 7 through 72 for FORTRAN
statements (comments may extend to column 80). Indent
statements for clarity.

The bodies of DO-loops, IF-THEN-ELSE constructions, and
loops constructed with GO TOs should be indented using
increments consistent for the entirety of a module. For
example:

DO 200 IHOUR = 1, 24
IF (THIS(IHOUR) .EQ. THAT) THEN
XVAL (IHOUR) = COS(FLOAT (IHOUR}) )

ELSE
XVAL(IHOUR) = SIN(FLOAT(-IHOUR}))
END IF
100 CONTINUE - ! begin loop doing something

CALL SOMETHING (IHOUR, WHATEVER, FLAG)
IF (FLAG) GO TQ 200
XVAL{(IHOUR) = XVAL(IHOUR) + WHATEVER
GO TO 100 ! end loop doing something
200 CONTINUE ! end loop on IHOUR

Line Numbers

FORTRAN statement labels should be in increasing order with
gaps in numbering so that statement labels of future code
revisions can maintain increasing number order.

White Space

<TAB>s must be removed from source code before production
acceptance.

Commas in lists (e.g., declaration lists, READ/WRITE lists,
argument lists, format lists) should be followed.by one or
more blanks.

Use blanks to pad out statements to show structural
similarities and to provide better readability. For example:

A + SIN(B*C) /D
EE + B**2 - C**2

X (IROW)}
YAB (IROW)

nou

is preferable to:

X{IROW)=A+SIN(B*C) /D
YAB({IROW)=EE+C**2-D**2

Blank lines.or blank comment statements should be used to
set off program structures as appropriate (so that logically
related parts are grouped together by the reader‘s eye).

NOTE: the current IBM compiler doesn‘t accept blank
lines. However, there exist EVE procedures for making
the IBM conversion automatically. Under UNIX, awk or
sed can do this easily, also.

Continuations
*&" is the preferred continuation character.
Continue executable statements only after delimiters (e.g.,
after commas in an argument list, or before or after
arithmetic operators in an arithmetical expression).
Text in a continuation should be indented beyond the current

indentation level, or as appropriate to show structural
similarities. )



Floating-Point Constants

The use of zeros where needed on either side of a decimal
point to enhance readability of floating-point constants is
preferred. For example, use *1.0* and *0.007* instead of
“1.*"and *.007".

Divides

Prevent divide-by-zero situations by testing divisors for
zero prior to their intended use in divides. If zero, take
an alternate course of action rather than performing the
divide. (Better to program for it than to be caught by it.)

Error Conditions .

It shall be possible from the text of any error messages
logged by a program to uniquely identify the location in
the source code at which the error occurred and the nature
of the error.

DECLARATIONS AND TYPING
Variable Names

Variable names should carry a meaning relevant to the
context of the usage. For example, when using a DO loop to
traverse a grid, "IROW* and *JCOL*" are more meaningful names
than *"I* and “J".

Portability may require that variable names have at most six
characters.

Data Types

Inclusion of an IMPLICIT NONE statement in each FORTRAN
routine is preferred (where the compiler supports it).

Declaring data types as REAL, DOUBLE PRECISION, and INTEGER
is preferred over REAL*4, REAL*8, and INTEGER*4 (for code
portability purposes).

Conversion of values between data types should be explicit:
use FLOAT, IFIX, INT, NINT, SNGL, and DBLE as appropriate.
For example, if X is a real variable and I is an integer,
"X = FLOAT ( I })* is much easier to maintain than *X = I-.

Testing REAL or COMPLEX variables for equality risks causing
numerical problems. For two REAL numbers it is better to
test that the absolute value of the difference between them
is less than some appropriately small number, or better still
for the general case, test that the absolute value of the
difference is some smail percentage of the absolute value of
the larger of the two numbers. For example:

IF (ABS(A - B) / MAX(ABS(A}, ABS(B)) .LT. 1.0ES5) THEN ...

For two complex numbers test both the real portions and
the complex portions separately in this manner.

Comparisons (in IF statements, for instance) should be .
between like types. Some FORTRAN compilers have been known
to treat "IF ( X .EQ. 1 )..." asg a comparison of bit
patterns between REAL variable X and INTEGER constant 1.

Variables should be initialized before reference (on many



systems (e.g.. CRAY), variables are NOT initialized to zero
by the loader}.

SAVE Statements and State Variables

For portability, variables within a function or subroutine
which must retain their values from one call to the next
should be listed in SAVE statements.

NOTE: the current VAX and IBM FORTRAN compilers do this
“anyway; the CRAY FORTRAN compiler does not.

(*State variables* are variables local to a subroutine, used
to govern the behavior of that subroutine on the basis of
its past history (e.g., to indicate whether a routine which
reads lines from a file is currently reading a header line,
a data line, or whatever). *Text pointers® is another term
which is used, especially. when dealing with files.)

State variables used to control subroutines should be fully
documented by comments located where the state variable is
declared in the source code. These comments should
indicate:

(1) the set of possible values;
(2) the meaning of each value; and
(3) the action corresponding to that value.

Common Blocks and INCLUDE Files
Do not use unnamed common blocks.

Common blocks should normally be placed in INCLUDE files.
One common block or related set -of blocks per file is
preferred.

Dependencies in INCLUDE files (e.g., for dimensioning
parameters) should be documented in header comments for the
dependent INCLUDE file. .

Use includes in one of two ways:

(1) For INCLUDEs that will always be used in a
FORTRAN source use:

INCLUDE ‘file name’

(2) For an INCLUDE where a selection is made from a
number of possibilities (e.g., different sets of
model configuration parameters) use:

INCLUDE file name (Note: no quotes)

Using the second form you can then specify in a model
configuration file which include file to use.

Subroutines and Functions

Where applicable, comment text should be included that
outlines the purpose of each major variable, the logic of
each coded algorithm, literature reference identifying
source of each published equation and of equation parameters

The use of system-dependent code must be clearly indicated
in the header comment.

Where there exist subroutine preconditions, (i.e.,
operations which MUST be done within the program before a
call to the routine can be expected to work), they should be



clearly stated within header comments.

Within the calling module, subroutine calls should have
comments indicating the purposes for which major subroutines
are being invoked.

Return values for functions are NOT "output arguments® and
SHOULD NOT be documented as though they were. Nor are they
elements of the *argument list*: they should instead have a
separate heading in the declaration comments.

External functions are NOT *local variables® and should not
be documented as though they were--they are neither local
nor variable. (In fact, FORTRAN functions are global
constants.)

Whenever possible, use the generic name for intrinsic
functions, rather than the type-specific name. For example,
use MAX() instead of AMAX1(). (It is safer to let the
compiler determine the correct type for the function than
for the user to possibly specify an incorrect type.) The
only time that the type-specific function should be needed
is if the function itself is being used as a subroutine
argument .

The Models-3 model manager provides a couple of features
that make it easier to select from optional subroutines
such as for different nested grid models. See the model
manager documentation for code requirements relating to
these features.

Locality

All specification information for a variable should be
located together textually in the program source code; this
includes the placement together of usage comment,
declaration, dimensioning, and initialization. For example:

C thriﬁile constants THRM used by the Widgert Algorithm:
REAL THRM( 3 } / 1.0, 2.0, 3.0 /

is greatly to be preferred over widely separating the usage

comment, declaration, dimension, and data statements.
Declaration Grouping

Grouping of declarations by purpose (for arguments/

parameters/external functions/local variables) is

preferred. For example:

C arguments

INTEGER ICOL t column for calculation
REAL XVAL t x,y values for
REAL YVAL ¢ thrimble calculation

C parameter

REAL GG ! gravitational constant
PARAMETER { GG = 9.80655 )

C external functions

REAL XATAN2 ! error-trapped arctan(y/X)
INTEGER GETNUM ! prompt for integer
INTEGER I0OCL ! interpret VMS error status

EXTERNAL XATAN2, GETNUM, IOCL



C 1local variables

INTEGER I, Jd, K ! loop counters
REAL X, Y ' grid coordinates

Parameters

Physical constants, conversion constants, etc., should be
defined using PARAMETER statements, rather than put into
variables initialized, e.g., by DATA statements.

When the same parameter values are used by more than one
subroutine, they should be placed in an INCLUDE file. Where
possible, values from a standard INCLUDE file should be
used.

Where possible, derived parameter values should be defined
in terms of the primitive parameter values. For example:

PARAMETER (IROW = 34, JCOL = 25, IZ = 23)
PARAMETER (ISIZE = IROW * JCOL * I2Z)

CONTROL STATEMENTS

Arithmetic IF, Alternate RETURN, PAUSE, and Assigned GOTO
statements are to be avoided. They will probably be completely
forbidden in the next release of the ANSI FORTRAN standard.

CONTINUE statements should be used as the targets of GO TO
statements.

Computed GO TO statements should have comments documenting the
possible values and corresponding meanings of the control
variable.

Terminate DO-loops with (numbered) CONTINUE statements.

There should be exactly one closing CONTINUE for each DO loop
(i.e., rather than using a single label to terminate multiple
nested loops). This is REQUIRED by various parallel FORTRAN
compilers and suggested strongly in the upcomlng ANSI FORTRAN
draft standard.

Use type INTEGER variables (rather than type REAL)} for FORTRAN
DO-loop counters.

The closing CONTINUE for a DO loop must not be the destination
of a GO TO from outside the body of the loop. (From INSIDE the
body, a GO TO the end of the loop is OK.) Likewise, the END IF
closing an IF-THEN-ELSE construction must not be the destination
of a GO TO statement. This standard is strongly suggested by
the upcoming ANSI FORTRAN draft standard.

Where feasible, DO loops are preferred over loops constructed
with IFs and GO TOs. Likewise, IF-THEN...ELSE IF-THEN...
ELSE...END IF constructions are preferred over extended
sequences of IFs and GO TOs.

Loops and block constructions {(IF-THEN...ELSE IF...ELSE...

END IF, DO loops, etc.) with either deep nesting or long blocks
of code in them should have documentation (by in-line
exclamation point ("!...") comments) for block beginning,
alternatives (ELSE blocks)., and ending, so that their beginnings,
alternatives, and endings can be matched up easily. .

Loop beginning and loop ending for loops constructed with IFs
and GO TOs must be documented by comments.

It is preferred that "ELSE IF*, "END If" and "GO TO* be two



words each, rather than one word each (i.e., insteéd of
"ELSEIF", “ENDIF*®, or *GOTO").

INPUT AND OUTPUT
File OPEN statements should be used, instead of ASSIGNs to FOROOXx.

READs from standard input and WRITEs to standard output
(screen or log) should refer to unit *, rather than to
units 5,6.

For programs which receive control inputs from stdin, there
should be a prompt for each such input.

For programs which may run in batch mode, each control parameter
{frequently taken from standard input, although not necessarily)
and its description should be echoed to standard output

{i.e., the program log). .

Input which controls the time period for processing in a program
should be requested in the form "starting date, starting time,
duration®, rather than some version of "starting date, starting
time, ending date, ending time."

Interactive programs should check the validity of all user
responses and allow the user to correct erroneous inputs.
Case-sensitive input should be required only where absolutely
necessary. Where possible, the program should provide "smart*
default responses. .

Interactive programs should test data availability before
reading from an input file, rather than allowing the program to
crash from, e.g, an end-of-file.

NOTE: This implies putting an .“IOSTAT =" clause in READ
statements, together with appropriate error-handling to
deal with 1/0 errors. )

Use mixed-case output to a log: the human-factors specialists
say that WHILE ALL CAPS GETS THE READER'S ATTENTION, IT IS
HARDER TO READ TEXT THAT IS GIVEN IN ALL CAPS.

As appropriate, each step processed by a Models-3 program should
be logged. Each file written to, or otherwise altered, during
program execution should be logged.

It is preferred that the log file be formatted to fit within 80
columns, so that it may be viewed from a terminal.

Format numbering and placement should follow a scheme consistent
throughout the entirety of a module. The following are two
alternative suggestions:

(1) Place format statements at the end of the program/
subroutine/function body. Use line numbers for FORMAT
statements following the numbering scheme provided in
the template in Appendix 1:

91xxx: error and warning messages
92xxx: informational (log) messages
93xxx: file I/0

94xxx: internal buffering

95xxx: other (miscellaneous)

{2) Place format statements immediately following
their first uses in READ or WRITE statements.



APPENDIX 1: Template for programs/subroutines/functions

Program/subroutine/functiuvon statement

C*t*****t**t*i***t*'tt.*tt*t***tt*ttt**t‘**tttttt't*t***itf*filtt***t**t

FUNCTION:

PRECONDITIONS REQUIRED:

RETURN VALUE(S) :

KEY SUBROUTINES AND FUNCTIONS CALLED:

REVISION HISTORY:

nnnNnNnNanNNONONOnNO0n

*ﬁ**t*t*t’*ttt*ﬁ"**t't**t*i**"**t***tittti't*ttitt**ti*'ti*i*tttttt‘*t

IMPLICIT NONE

Coriteieiees INCLUDES:

Codennnnnnnn ARGUMENTS and their descriptions:

Cuovenninnnnn PARAMETERS and their descriptions:

Covvvnnnnnnn EXTERNAL FUNCTIONS and their descriptions:

o SAVED LOCAL VARIABLES and their descriptions:
Cuovininnnnans NOTE: the ANSI standard requires use of SAVE statements
Covinnnnanns for variables which must retain their values from call
Corinnnnnnnn to call.

Covennnenenn SCRATCH LOCAL VARIABLES and their descriptions:

C****i**********tﬁt***t*'lt**ﬁ**t*******t**t********t*t**********t**t*tt*

(o begin body of subroutine

RETURN
Ct****ﬁt**t****tt** FORMAT STATEMEN"TS t*****ttf**ttttttttt*t*t*tt*
L o Error and warning message formats..... 91xxx

91000 FORMAT ( //5X , ‘*** ERROR ABORT in subroutine dummy ***’,

& /5X , A,

& /7)) ! generic error message format
Coveinneennn Informational (LOG) message formats... 92xxx
Coveiieennnn Formatted file I/0 formats............ 93 XXX

C..... e Iinternal buffering formats............ 94 XXX



Coveoonnnnnn Miscellaneous formatsS.........ccc-c---

95000 FORMAT ( /SX , A ., $ ) 't generic prompt format.

END



APPENDIX 2: Template for INCLUDE Files

INCLUDE FILE 22ZZZ.EXT
CONTAINS:

DEPENDENT UPON:
REVISION HISTORY:

Covennni . end ZZZT-EXT o



LANGUAGE-INDEPENDENT CODING STANDARD FOR MODELS-3

REUSE

If a library module does the task already, use it. Don’‘t
reinvent the wheel!!!

TYPOGRAPHY AND STYLE
Source File Extensions

To satisfy the Models-3 model-builder tool use appropriate
source code file name extensions. For example:

(1) °*.F" for FORTRAN source code files;
(2) .EXT* for include files;

(3) .c* for C source code files;

(4) .h* for C include files;

(5) .cc* for C++ source code files;

(6) _h* and “.hh* for C++ include files.

SCCs

To satisfy the Models-3 model-builder tool and its use of
SCCS include a comment statement at the beginning of each
source code file. For example:

{1) for FORTRAN:
C W% 2P% 3G% 30U
(2) for C:

char <file name>_vers{] = "3W% %P% 3G% 3U%";

Comments

Revision history should be maintained in a format conforming
to the language used. It should document the nature of the
revision, the name of the developer, and the date of
revision.

Comments should be used freely. but should be concise and
should not restate the obvious.

Where applicable, comment text should be included that
outlines the purpose of each major variable, the logic of
each coded algorithm, literature reference identifying
source of each published equation and of equation
parameters.

The use of system-dependent code must be clearly indicated
in the header comment.

Where there exist routine preconditions, (i.e.,
operations which MUST be done within one routine before a
call to another routine can be expected to work), they
should be clearly stated within header comments.

Dependencies in INCLUDE files (e.g.,'for dimensioning
parameters) should be documented in header comments for the
dependent INCLUDE file. :

State variables used to control subroutines should be fully
documented by comments located where the state variable is
declared in the source code. These comments should
indicate: :



(1) the set of possible values;
(2) the meaning of each value; and
(3} the action corresponding to that value.

("State variables® are variables local to a routine, used
to govern the behavior of that routine on the basis of

its past history (e.g., to indicate whether a routine which
reads lines from a file is currently reading a header line,
a data line, or whatever). *Text pointers*® is another term
which is used, especially when dealing with files.)

Loops and block constructions (IF-THEN...ELSE IF...ELSE...
END IF, DO loops, etc.) with either deep nesting or long
blocks of code in them should have documentation comments
for block beginning, alternatives (ELSE blocks), and ending,
so that their beginnings, alternatives, and endings can be
matched up easily.

Line Lengths, Margins, and Indentation

The bodies of LOOPs, IF~THEN-ELSEs, and SWITCH/CASEs should
be indented using increments consistent for the entirety of
a module.

It is preferred that source code fit between columns 1 and
80, for readability at standard terminals.

White Space

<TAB>s must be removed from source code before production
acceptance.

Commas in lists (e.g., declaration lists, READ/WRITE lists,
argument lists, format lists) should be followed by one or
more blanks. .

Use blanks to pad out statements to show structural
similarities and to provide better readability. For
example:

X (IROW)
YAB(IROW)

A +SIN(B*C) /D
EE + B**2 - C**2

is preferable to:

X(IROW) =A+SIN(B*C} /D
YAB(IROW) =EE+C**2-D**2

Blank lines should be used to set off program structures
as appropriate (so that logically related parts are
grouped together by the reader‘’s eye). For example,

it is a good practice to set off indented blocks of code
with blank lines.

Floating-Point Constants

The use of zeros where needed on either gide of a decimal
point to enhance readability of floating-point constants
is preferred. For example, use *1.0* and "0.007* instead
of *1.* and *.007".

Divides

Prevent divide-by-zero situations by testing divisors for
zero prior to their intended use in divides. If zero,
take an alternate course of action rather than performing
ghe.divide. (Better to program for it than to be caught
y it.) .



Error Conditions

It shall be possible from the text of any error messages
logged by a program to uniquely identify the location in
the source code at which the error occurred and the
nature of the error.

DECLARATIONS AND TYPING
Variable Names

Variable names should carry a meaning relevant to the
context of the usage. For example, when using a loop
to traverse a grid, “IROW* and “JCOL" are more
meaningful names than *I* and *J°.

Data Types
Conversion of values between data types should be explicict.

Testing REAL or COMPLEX variables for equality risks
causing numerical problems. For two REAL numbers it is
better to test that the absolute value of the difference
between them is less than some appropriately small number,
or better still for the general case, test that the
absolute value of the difference is some small percentage
of the absolute value of the larger of the two numbers:

X = FLOAT ( I )" is much easier to maintain than "X = I-.

Variables should be initialized before reference: on many
systems (e.g., CRAY), variables  are NOT initialized to
zero by the loader. .

Locality

All specification information for a variable should be
located together textually in the program source code;
this includes the placement together of usage comment,
declaration, dimensioning, and initialization. For
example:

C thrimblé éonscanCS THRM used by the Widgert Algorithm:
REAL THRM( 3 ) / 1.0, 2.0, 3.0 /

is greatly to be preferred over widely separating the
usage comment, declaration, dimension, and data statements.

INPUT AND OUTPUT

For programs which receive control inputs from stdin, there
‘should be a prompt for each such input.

For programs which may run in batch mode, each control
parameter (frequently taken from standard input, although not
necessarily) and its description should be echoed to standard
output (i.e., the program log) . :

Input which controls the time period for processing in a
program should be requested in the form *starting date,
starting time, duration®, rather than some version of

*starting date, starting time, ending date, ending time."

Interactive programs should check the validity of all user
responses and allow the user to correct erroneous inputs.



Case-sensitive input should be required only where absolutely
necessary. Where possible, the program should provide *"smart®
default responses.

Interactive programs should test data availability before
reading from an input file, rather than allowing the program
to crash from, e.g, an end-of-file.

Use mixed-case output to a log: the human-factors specialists
say that WHILE ALL CAPS GETS THE READER’S ATTENTION, IT IS
HARDER TO READ TEXT THAT IS GIVEN IN ALL CAPS.

As appropriate, each step processed by a Models-3 program
should be logged. Each file written to, or otherwise altered,
during program execution should be logged.

It is preferred that the log file be formatted to fit within
80 columns, so that it may be viewed from a terminal.



C CODING STANDARD FOR MODELS-3

REUSE

If a library module does the task already, use it. Don‘t
reinvent the wheel!!!

TYPOGRAPHY AND STYLE
ANSI

Code will conform to ANSI C (except for limited use of
extensions necessary to achieve specific desired results) .

Source File Extensions

To satisfy the Models-3 model-builder tool use the following
C source code file name extensions:

(1y *.c* (;cc for C++) for other than include files:
(2) *.h* (.hh for C++) for include files.

SCCs

To satisfy the Models-3 model-builder tool and its use of
SCCS include a char statement at the beginning of each C
(or C++) source code file as follows:

char <file name>_vers{] = “gWe %P% 3G% BUR";

Comments

Comments should be used freely and should be con&ise.
They should not be used to restate the obvious.

comments documenting the following (where they add to
readability/understanding) are to be encouraged:

- the purpose of variables,

_ jindividual steps in algorithms,

- at the beginning and ending of loops, structure
definitions, typedefs, and the various parts of
«jf* and *switch* statements.

Revision history should be maintained in a format conforming
to that of the templates (Appendices 1 and 2). For the
respective version of the module, it should document the
nature of the revision, the name of the developer, and the
date of revision. (Abbreviated version/revision history
information should also be provided to SCCS when making a
version/revision change to SCCS controlled code.)

Include Files
common definitions used across programs should be put in
include’ files. .

Line Lengths, Margins, and Indentation

it is preferred that source code fit between columns 1 and
80, for readability at standard terminals.

The bodies of loops. if-then-else constructions, and switch
statements should be indented using increments consistent



for ( icol = 0 , ent 0
{
if { 0 < af icol 1)

{

b[ icol ] = af i

} /* .END 1IF
else{

b( icol } =

list{ cnt++ ] =

} /* END

EL

switch ( cnt )
{

{by 4 columns is suggested) .
visualize control structures.)

;i 1col < SIZE ; icol++ )

col ] ;

~CLAUSE: aflicol] > 0 */
-al icol } ;

icol ;

SE-CLAUSE: not ( alicol} > 0 ) =y

case O0:
printf ( *af] still nonpositive at %d*, icol )
break ; /** Q *xxy

case 1:
printf ( *a{] turns POSITIVE at %d*, icol )
break ; [** 1 %y

default:
printf ( *3d positive al{l’s at %d*, cnt, icol )
break ; /** default ==/

} /** END SWITCH on cnt w*/

} /* END FOR-LOOP on icol */

White Space

<TAB>s must be removed from source code before production

acceptance.

Commas in lists (e.g., dec
format lists) should be fo

Assignment operators (==",
blanks, to avoid confusion

laration lists, argument lists,
llowed by blanks.

"+=°, etc.) should be set off by
with obsolete “=4+°* (UNIX V6 and

before) versions of these operators.

Use blanks to pa
similarities and

X f[row]

d out statements to show structural
to provide better readability.

a + sin(b * (float) ¢) / 4d;

For example:

yab{row] ee + b / 2 -
is preferable to:

x{row]=a+sin(b*(float)c)/d;
yab[row]=ee+b/2-(float)c:

(float) c;

In comparisons for equality wi
etc.), it is more reliable to

th manifest constants (0, 1,
put the constant on the left

as in *"if ( 0 == x[ i 1)
assignment operator looks so muc
operator, and the compiler will

as an error, but will silently p
decide not to do the body of the
construction *if ( x{ i ]

Blank lines should be used
appropriate (so that logically r
together by the reader-‘s eye) .

This 'is safer, since the
h like the equality

flag *if ( 0 = x[ i D I

ut a zero in x{ i ) and
if statement in the

elated parts are grouped

to set off program structures as

~

.

‘



Floating-Point Constants

The use of zeros where needed on either side of a decimal
point to enhance readability of floating-point constants is
preferred. For example, use ®1.0" and *0.007°instead of
*1." and *.007".

Divides

Prevent divide-by-zero situations by testing divisors for
zero prior to their intended use in divides. If zero, take
an alternate course of action rather than performing the
divide. (Better to program for it than to be caught by it.)

Error Conditions

Error conditions related to data processing (e.g. missing
or bad data, or failed data resource acquisition) shall be
logged using program jssued error messages. It shall

be possible from the text of any such error message to
uniquely identify the jocation in the source code at which
the error occurred, the nature of the error, and (if
appropriate) a suggested way to recover. {The user
generally has the ability to recover from these types of
error conditions.}

Error conditions resulting from program bugs (e.g., a call
to a missing function) should be logged identifying the
error location. The program should then be halted
immediately. (Use of the ‘assert ()’ macro is appropriate
in these situations where the user has no control over
resolving the condition.)

DECLARATIONS AND TYPING .
Identifiers

1dentifiers should generally be spelled out using an
underscore between words. However, abbreviations

(e.g., site-id) and acronyms that are readily recognized
may be used. (Arbitrary dropping of vowels from
jdentifiers should be avoided.)

In general, use lower case for variable names; start
non-variable names (e.g.. function names and types) with
an upper case letter; use all upper case for acronyms.

Preprocessor-definitions should be UPPER CASE, Typedefs
should be Capitalized, and other C code should generally
be lower case. (Upper case may be used in specialized
situations such as advanced variable naming schemes
where variable types are indicated in variable names.)

Variable names should carry a meaning relevant to the
context of the usage. For example, when using a for-loop
to traverse a grid, "row" and *"col* are more meaningful
names than "i* and *j°*.

Avoid the following:
Identifiers beginning with the underscore character (_)

Identifiers differing only in the case of the
characters composing them, at least in circumstances
where the identifiers may be visible to a linker
(both the VMS and the DOS linkers change identifiers
to uppercase before starting to process them).



Use ‘static’ and ‘extern- qualifiers to ensure intended
scoping as follows:

- All intentionally private entities (functions,
non-routine variables, etc.) should be declared
‘static’ (to enforce local (file) scope and thus
limit global namespace pollution).

- All intentionally public entities should be declared
‘extern’ in an appropriate header (.h) file for
use (via #include). i

- The keyword ‘extern’ should not be used inside a ‘.c°
file.

Data Variables

Where well-defined conversion is not guaranteed, conversion
of values between data types should use explicit type-casts.
{In general the use of type-casts should be minimized and
not used simply to ‘silence’ legitimate compiler warnings.)

Testing float or double variables for equality risks causing
numerical problems. It is better to test that the absolute
value of the difference between the two numbers is some
small fraction of the absolute value of the larger of the
two numbers.

Variables must be initialized before reference.

Functions

Function definition and declaration will use ANSI syntax.
All functions called will be declared using function
prototypes, in order to ensure that calls contain the
correct numbers of arguments, each of the correct types,
and return values of the correct types. Where appropriate,
sets of declarations may be placed in include-files.

Read-only function arguments should be declared ‘const‘
as in: .

char *strcat (char *sl, const char *s2);

Where applicable, comment text should be included outlining
the purpose of each major variable, the logic of each coded
algorithm, literature reference identifying source of each
published equation and the definitions of equation
parameters.

The use of system-dependent code must be clearly indicated
in the header comment.

Where there exist preconditions for a function

(e.g. operations which MUST be done within the program
before a call can be expected to work, or restrictions

on the values of input arguments), they should be clearly
stated within prologue comments. (Use of the ‘assert{)*
macro may also be apropos to ensure that preconditions
are met.)

Within the calling module, calls should have comments
indicating the purposes for which major functions are
being invoked.

Locality

All specification information for a variable should be
located together textually in the program source code;
this includes the placement together of usage comment,
declaration, dimensioning, and initialization. For



example:

}; thrimble constants used by the Widgert */
/* Algorithm: */ :
static int thrimble( 3 ] = { 1, 2, 3 }

is greatly to be preferred over widely separating the
usage comment, the declaration, and the initialization.

INPUT AND OUTPUT:

For programs which receive control inputs from stdin, there
should be a prompt for each such input.

For programs which may run in batch mode, each control
parameter (fregquently taken from standard input, although not
necessarily) and its description should be echoed to standard
output (i.e., the program log). ) )

Interactive programs should check the validity of all user
responses and allow the user to correct erroneous inputs.
Case-sensitive input should be reguired only where absolutely
necessary. Where possible, the program should provide ®smart*
default responses, indicated in brackets [LIKE THIS] in the
corresponding prompt .

Interactive programs should test data availability before
reading from an input file, rather than allowing the program
to crash from, e.g, an end-of-file condition.

Use mixed-case output to a log: the human-factors specialists
say that WHILE ALL CAPS GETS THE READER’S ATTENTION, IT IS
HARDER TO READ TEXT THAT IS GIVEN IN ALL CAPS THAN IT IS

TO READ MIXED-CASE TEXT.

As appropriate, each step processed by a Models-3 program
should be logged. Each file written to, or otherwise altered,
during program execution should be logged. . .

It is preferred that output (log files) be formatted to fit
within 80 columns, so that it may be viewed from any ANSI
terminal or printer.

Input which controls the time period for processing in a
program should be requested in the form *starting date,
starting time, duration®, rather than some version of
*starting date, starting time, ending date, ending time.*®



APPENDIX 1: Template for Functions
/* (preprocessor DEFINES and INCLUDES here) */

/* (global declarations here) */

,*t*t****ti"**f!*t***tttﬁ****ttt'*t**t***i***tt*tt*fit**'t*I**f***ti*f*
®

PURPOSE:
PRECONDITIONS:
KEY CALLS:

NOTES: (if any, such as post conditions, machine dependencies, etc.)

REVISION HISTORY:

****I’*****'ttt*t**ttt**t**'*t******t****ﬁ****_**t*t*t******t*****i"t*i/

LEE 2R BN N SN 'S

TYPE DUMMY ( /* (argument declarations here) */ )
{ /* begin body of DUMMY() */
/* (local declarations here) */
/* (function body here) */
/* (return exit status here) */

} /* end body of DUMMY ()} */



APPENDIX 2: Template for INCLUDE files

/tt*t'k'k*tt*'k**t*********t**it***** X2 R RS R RS2 S22 2Rttt st 8

*
*
*
*
*
*
*
*

INCLUDE FILE: dummy.h
PURPOSE:

INCLUDE DEPENDENCIES:
REVISION HISTORY:

tt*******t********t*ﬁtti***t*'f*’***t'*t*********t*******ﬁ********/

#ifndef DUMMY_H /* (inclusion protection) */
#define DUMMY_H :

/* (include-file body goes here)' */
#endif /* DUMMY_H */

/t**tt******t* END durmx‘Y.h tt*l‘*tt*“*tt***tt***t****l"k******/
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Electricity is increasingly recognized as a key to societal progress throughout the world, dri-
ving economic prosperity and improving the quality of life. The Electric Power Research
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